Matches in SemOpenAlex for { <https://semopenalex.org/work/W2587791302> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2587791302 abstract "The segmentation of retinal morphology has numerous applications in assessing ophthalmologic and cardiovascular disease pathologies. The early detection of many such conditions is often the most effective method for reducing patient risk. Computer aided segmentation of the vasculature has proven to be a challenge, mainly due to inconsistencies such as noise, variations in hue and brightness that can greatly reduce the quality of fundus images. Accurate fundus and/or retinal vessel maps give rise to longitudinal studies able to utilize multimodal image registration and disease/condition status measurements, as well as applications in surgery preparation and biometrics. This paper further investigates the use of a Convolutional Neural Network as a multi-channel classifier of retinal vessels using the Digital Retinal Images for Vessel Extraction database, a standardized set of fundus images used to gauge the effectiveness of classification algorithms. The CNN has a feed-forward architecture and varies from other published architectures in its combination of: max-pooling, zero-padding, ReLU layers, batch normalization, two dense layers and finally a Softmax activation function. Notably, the use of Adam to optimize training the CNN on retinal fundus images has not been found in prior review. This work builds on prior work of the authors, exploring the use of Gabor filters to boost the accuracy of the system to 0.9478 during post processing. The mean of a series of Gabor filters with varying frequencies and sigma values are applied to the output of the network and used to determine whether a pixel represents a vessel or non-vessel." @default.
- W2587791302 created "2017-02-24" @default.
- W2587791302 creator A5017125876 @default.
- W2587791302 creator A5036625139 @default.
- W2587791302 creator A5077041853 @default.
- W2587791302 creator A5079548448 @default.
- W2587791302 date "2017-02-16" @default.
- W2587791302 modified "2023-09-22" @default.
- W2587791302 title "Use of Gabor filters and deep networks in the segmentation of retinal vessel morphology" @default.
- W2587791302 cites W1969176779 @default.
- W2587791302 cites W2045227075 @default.
- W2587791302 cites W2109037308 @default.
- W2587791302 cites W2116628223 @default.
- W2587791302 cites W2136922672 @default.
- W2587791302 cites W2145305441 @default.
- W2587791302 cites W2150769593 @default.
- W2587791302 cites W2163344010 @default.
- W2587791302 cites W2177654152 @default.
- W2587791302 cites W2486758514 @default.
- W2587791302 cites W2529153069 @default.
- W2587791302 cites W2919115771 @default.
- W2587791302 doi "https://doi.org/10.1117/12.2252988" @default.
- W2587791302 hasPublicationYear "2017" @default.
- W2587791302 type Work @default.
- W2587791302 sameAs 2587791302 @default.
- W2587791302 citedByCount "4" @default.
- W2587791302 countsByYear W25877913022018 @default.
- W2587791302 countsByYear W25877913022019 @default.
- W2587791302 countsByYear W25877913022022 @default.
- W2587791302 crossrefType "proceedings-article" @default.
- W2587791302 hasAuthorship W2587791302A5017125876 @default.
- W2587791302 hasAuthorship W2587791302A5036625139 @default.
- W2587791302 hasAuthorship W2587791302A5077041853 @default.
- W2587791302 hasAuthorship W2587791302A5079548448 @default.
- W2587791302 hasConcept C118487528 @default.
- W2587791302 hasConcept C136886441 @default.
- W2587791302 hasConcept C144024400 @default.
- W2587791302 hasConcept C153180895 @default.
- W2587791302 hasConcept C154945302 @default.
- W2587791302 hasConcept C160633673 @default.
- W2587791302 hasConcept C188441871 @default.
- W2587791302 hasConcept C19165224 @default.
- W2587791302 hasConcept C2776391266 @default.
- W2587791302 hasConcept C2779883129 @default.
- W2587791302 hasConcept C31972630 @default.
- W2587791302 hasConcept C41008148 @default.
- W2587791302 hasConcept C52622490 @default.
- W2587791302 hasConcept C71924100 @default.
- W2587791302 hasConcept C81363708 @default.
- W2587791302 hasConcept C89600930 @default.
- W2587791302 hasConceptScore W2587791302C118487528 @default.
- W2587791302 hasConceptScore W2587791302C136886441 @default.
- W2587791302 hasConceptScore W2587791302C144024400 @default.
- W2587791302 hasConceptScore W2587791302C153180895 @default.
- W2587791302 hasConceptScore W2587791302C154945302 @default.
- W2587791302 hasConceptScore W2587791302C160633673 @default.
- W2587791302 hasConceptScore W2587791302C188441871 @default.
- W2587791302 hasConceptScore W2587791302C19165224 @default.
- W2587791302 hasConceptScore W2587791302C2776391266 @default.
- W2587791302 hasConceptScore W2587791302C2779883129 @default.
- W2587791302 hasConceptScore W2587791302C31972630 @default.
- W2587791302 hasConceptScore W2587791302C41008148 @default.
- W2587791302 hasConceptScore W2587791302C52622490 @default.
- W2587791302 hasConceptScore W2587791302C71924100 @default.
- W2587791302 hasConceptScore W2587791302C81363708 @default.
- W2587791302 hasConceptScore W2587791302C89600930 @default.
- W2587791302 hasLocation W25877913021 @default.
- W2587791302 hasOpenAccess W2587791302 @default.
- W2587791302 hasPrimaryLocation W25877913021 @default.
- W2587791302 hasRelatedWork W1825382665 @default.
- W2587791302 hasRelatedWork W2113480316 @default.
- W2587791302 hasRelatedWork W2312607644 @default.
- W2587791302 hasRelatedWork W2592425643 @default.
- W2587791302 hasRelatedWork W2714229978 @default.
- W2587791302 hasRelatedWork W2738237904 @default.
- W2587791302 hasRelatedWork W2787375075 @default.
- W2587791302 hasRelatedWork W2790301353 @default.
- W2587791302 hasRelatedWork W2800754480 @default.
- W2587791302 hasRelatedWork W2889070868 @default.
- W2587791302 hasRelatedWork W2896018630 @default.
- W2587791302 hasRelatedWork W2916722947 @default.
- W2587791302 hasRelatedWork W2923062287 @default.
- W2587791302 hasRelatedWork W3022812129 @default.
- W2587791302 hasRelatedWork W3028153050 @default.
- W2587791302 hasRelatedWork W3104734424 @default.
- W2587791302 hasRelatedWork W3148584990 @default.
- W2587791302 hasRelatedWork W3175565536 @default.
- W2587791302 hasRelatedWork W3185718302 @default.
- W2587791302 hasRelatedWork W3203782569 @default.
- W2587791302 isParatext "false" @default.
- W2587791302 isRetracted "false" @default.
- W2587791302 magId "2587791302" @default.
- W2587791302 workType "article" @default.