Matches in SemOpenAlex for { <https://semopenalex.org/work/W2587848016> ?p ?o ?g. }
- W2587848016 endingPage "1962" @default.
- W2587848016 startingPage "1948" @default.
- W2587848016 abstract "Abstract In decision‐making for groundwater management and contamination remediation, it is important to accurately evaluate the probability of the occurrence of a failure event. For small failure probability analysis, a large number of model evaluations are needed in the Monte Carlo (MC) simulation, which is impractical for CPU‐demanding models. One approach to alleviate the computational cost caused by the model evaluations is to construct a computationally inexpensive surrogate model instead. However, using a surrogate approximation can cause an extra error in the failure probability analysis. Moreover, constructing accurate surrogates is challenging for high‐dimensional models, i.e., models containing many uncertain input parameters. To address these issues, we propose an efficient two‐stage MC approach for small failure probability analysis in high‐dimensional groundwater contaminant transport modeling. In the first stage, a low‐dimensional representation of the original high‐dimensional model is sought with Karhunen‐Loève expansion and sliced inverse regression jointly, which allows for the easy construction of a surrogate with polynomial chaos expansion. Then a surrogate‐based MC simulation is implemented. In the second stage, the small number of samples that are close to the failure boundary are re‐evaluated with the original model, which corrects the bias introduced by the surrogate approximation. The proposed approach is tested with a numerical case study and is shown to be 100 times faster than the traditional MC approach in achieving the same level of estimation accuracy." @default.
- W2587848016 created "2017-02-24" @default.
- W2587848016 creator A5032853158 @default.
- W2587848016 creator A5041949027 @default.
- W2587848016 creator A5049454123 @default.
- W2587848016 creator A5065247476 @default.
- W2587848016 creator A5078138445 @default.
- W2587848016 date "2017-03-01" @default.
- W2587848016 modified "2023-09-27" @default.
- W2587848016 title "Efficient evaluation of small failure probability in high-dimensional groundwater contaminant transport modeling via a two-stage Monte Carlo method" @default.
- W2587848016 cites W1497473460 @default.
- W2587848016 cites W1501365675 @default.
- W2587848016 cites W1509756746 @default.
- W2587848016 cites W1528483814 @default.
- W2587848016 cites W1538934584 @default.
- W2587848016 cites W1548310890 @default.
- W2587848016 cites W1558478187 @default.
- W2587848016 cites W1574558736 @default.
- W2587848016 cites W1584258417 @default.
- W2587848016 cites W1587559447 @default.
- W2587848016 cites W1610397282 @default.
- W2587848016 cites W1610967235 @default.
- W2587848016 cites W1621653743 @default.
- W2587848016 cites W1703658160 @default.
- W2587848016 cites W1767500756 @default.
- W2587848016 cites W1935773568 @default.
- W2587848016 cites W1964718154 @default.
- W2587848016 cites W1973167793 @default.
- W2587848016 cites W1977133516 @default.
- W2587848016 cites W1977366696 @default.
- W2587848016 cites W1977913838 @default.
- W2587848016 cites W1991317455 @default.
- W2587848016 cites W1992066335 @default.
- W2587848016 cites W1999091229 @default.
- W2587848016 cites W2003732947 @default.
- W2587848016 cites W2005019101 @default.
- W2587848016 cites W2009675688 @default.
- W2587848016 cites W2012803260 @default.
- W2587848016 cites W2016927893 @default.
- W2587848016 cites W2018159038 @default.
- W2587848016 cites W2026749015 @default.
- W2587848016 cites W2039072764 @default.
- W2587848016 cites W2043170151 @default.
- W2587848016 cites W2044283475 @default.
- W2587848016 cites W2045396361 @default.
- W2587848016 cites W2053186076 @default.
- W2587848016 cites W2056310030 @default.
- W2587848016 cites W2060121127 @default.
- W2587848016 cites W2060471081 @default.
- W2587848016 cites W2062862681 @default.
- W2587848016 cites W2074686342 @default.
- W2587848016 cites W2077350190 @default.
- W2587848016 cites W2082015324 @default.
- W2587848016 cites W2108686115 @default.
- W2587848016 cites W2114821552 @default.
- W2587848016 cites W2115000104 @default.
- W2587848016 cites W2116051539 @default.
- W2587848016 cites W2117122565 @default.
- W2587848016 cites W2117920736 @default.
- W2587848016 cites W2118703405 @default.
- W2587848016 cites W2120353978 @default.
- W2587848016 cites W2123673345 @default.
- W2587848016 cites W2133944044 @default.
- W2587848016 cites W2133988404 @default.
- W2587848016 cites W2138813257 @default.
- W2587848016 cites W2143024042 @default.
- W2587848016 cites W2150592616 @default.
- W2587848016 cites W2158323410 @default.
- W2587848016 cites W2161365042 @default.
- W2587848016 cites W2163490846 @default.
- W2587848016 cites W2169791995 @default.
- W2587848016 cites W2171413517 @default.
- W2587848016 cites W2198133610 @default.
- W2587848016 cites W2250477044 @default.
- W2587848016 cites W2257157120 @default.
- W2587848016 cites W2270760299 @default.
- W2587848016 cites W2398436715 @default.
- W2587848016 cites W2473979308 @default.
- W2587848016 cites W2497530411 @default.
- W2587848016 cites W2962998905 @default.
- W2587848016 cites W2997857795 @default.
- W2587848016 cites W3126133291 @default.
- W2587848016 cites W4230330640 @default.
- W2587848016 cites W4230924274 @default.
- W2587848016 cites W4292023222 @default.
- W2587848016 cites W4300600608 @default.
- W2587848016 cites W575374134 @default.
- W2587848016 cites W67574550 @default.
- W2587848016 doi "https://doi.org/10.1002/2016wr019518" @default.
- W2587848016 hasPublicationYear "2017" @default.
- W2587848016 type Work @default.
- W2587848016 sameAs 2587848016 @default.
- W2587848016 citedByCount "22" @default.
- W2587848016 countsByYear W25878480162017 @default.
- W2587848016 countsByYear W25878480162018 @default.
- W2587848016 countsByYear W25878480162019 @default.
- W2587848016 countsByYear W25878480162020 @default.
- W2587848016 countsByYear W25878480162021 @default.