Matches in SemOpenAlex for { <https://semopenalex.org/work/W2587874048> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2587874048 abstract "The idea of spacecraft formations, flying in tight configurations with maximum baselines of a few hundred meters in low-Earth orbits, has generated widespread interest over the last several years. Nevertheless, controlling the movement of spacecraft in formation poses difficulties, such as in-orbit high-computing demand and collision avoidance capabilities, which escalate as the number of units in the formation is increased and complicated nonlinear effects are imposed to the dynamics, together with uncertainty which may arise from the lack of knowledge of system parameters. These requirements have led to the need of reliable linear and nonlinear controllers in terms of relative and absolute dynamics. The objective of this thesis is, therefore, to introduce new control methods to allow spacecraft in formation, with circular/elliptical reference orbits, to efficiently execute safe autonomous manoeuvres. These controllers distinguish from the bulk of literature in that they merge guidance laws never applied before to spacecraft formation flying and collision avoidance capacities into a single control strategy. For this purpose, three control schemes are presented: linear optimal regulation, linear optimal estimation and adaptive nonlinear control. In general terms, the proposed control approaches command the dynamical performance of one or several followers with respect to a leader to asymptotically track a time-varying nominal trajectory (TVNT), while the threat of collision between the followers is reduced by repelling accelerations obtained from the collision avoidance scheme during the periods of closest proximity.Linear optimal regulation is achieved through a Riccati-based tracking controller. Within this control strategy, the controller provides guidance and tracking toward a desired TVNT, optimizing fuel consumption by Riccati procedure using a non-infinite cost function defined in terms of the desired TVNT, while repelling accelerations generated from the CAS will ensure evasive actions between the elements of the formation. The relative dynamics model, suitable for circular and eccentric low-Earth reference orbits, is based on the Tschauner and Hempel equations, and includes a control input and a nonlinear term corresponding to the CAS repelling accelerations. Linear optimal estimation is built on the forward-in-time separation principle. This controller encompasses two stages: regulation and estimation. The first stage requires the design of a full state feedback controller using the state vector reconstructed by means of the estimator. The second stage requires the design of an additional dynamical system, the estimator, to obtain the states which cannot be measured in order to approximately reconstruct the full state vector. Then, the separation principle states that an observer built for a known input can also be used to estimate the state of the system and to generate the control input. This allows the design of the observer and the feedback independently, by exploiting the advantages of linear quadratic regulator theory, in order to estimate the states of a dynamical system with model and sensor uncertainty. The relative dynamics is described with the linear system used in the previous controller, with a control input and nonlinearities entering via the repelling accelerations from the CAS during collision avoidance events. Moreover, sensor uncertainty is added to the control process by considering carrier-phase differential GPS (CDGPS) velocity measurement error.An adaptive control law capable of delivering superior closed-loop performance when compared to the certainty-equivalence (CE) adaptive controllers is finally presented. A novel noncertainty-equivalence controller based on the Immersion and Invariance paradigm for close-manoeuvring spacecraft formation flying in both circular and elliptical low-Earth reference orbits is introduced. The proposed control scheme achieves stabilization by immersing the plant dynamics into a target dynamical system (or manifold) that captures the desired dynamical behaviour. They key feature of this methodology is the addition of a new term to the classical certainty-equivalence control approach that, in conjunction with the parameter update law, is designed to achieve adaptive stabilization. This parameter has the ultimate task of shaping the manifold into which the adaptive system is immersed. The performance of the controller is proven stable via a Lyapunov-based analysis and Barbalat’s lemma.In order to evaluate the design of the controllers, test cases based on the physical and orbital features of the Prototype Research Instruments and Space Mission Technology Advancement (PRISMA) are implemented, extending the number of elements in the formation into scenarios with reconfigurations and on-orbit position switching in elliptical low-Earth reference orbits. An extensive analysis and comparison of the performance of the controllers in terms of total Δv and fuel consumption, with and without the effects of the CAS, is presented. These results show that the three proposed controllers allow the followers to asymptotically track the desired nominal trajectory and, additionally, those simulations including CAS show an effective decrease of collision risk during the performance of the manoeuvre." @default.
- W2587874048 created "2017-02-24" @default.
- W2587874048 creator A5029833020 @default.
- W2587874048 date "2016-01-01" @default.
- W2587874048 modified "2023-09-26" @default.
- W2587874048 title "Autonomous formation flying: unified control and collision avoidance methods for close manoeuvring spacecraft" @default.
- W2587874048 hasPublicationYear "2016" @default.
- W2587874048 type Work @default.
- W2587874048 sameAs 2587874048 @default.
- W2587874048 citedByCount "0" @default.
- W2587874048 crossrefType "dissertation" @default.
- W2587874048 hasAuthorship W2587874048A5029833020 @default.
- W2587874048 hasConcept C121332964 @default.
- W2587874048 hasConcept C121704057 @default.
- W2587874048 hasConcept C126255220 @default.
- W2587874048 hasConcept C127413603 @default.
- W2587874048 hasConcept C1276947 @default.
- W2587874048 hasConcept C133731056 @default.
- W2587874048 hasConcept C13662910 @default.
- W2587874048 hasConcept C146978453 @default.
- W2587874048 hasConcept C154945302 @default.
- W2587874048 hasConcept C158622935 @default.
- W2587874048 hasConcept C203479927 @default.
- W2587874048 hasConcept C2775924081 @default.
- W2587874048 hasConcept C2780864053 @default.
- W2587874048 hasConcept C29829512 @default.
- W2587874048 hasConcept C33923547 @default.
- W2587874048 hasConcept C38652104 @default.
- W2587874048 hasConcept C41008148 @default.
- W2587874048 hasConcept C47446073 @default.
- W2587874048 hasConcept C62520636 @default.
- W2587874048 hasConcept C6557445 @default.
- W2587874048 hasConcept C86803240 @default.
- W2587874048 hasConcept C91575142 @default.
- W2587874048 hasConcept C91581856 @default.
- W2587874048 hasConceptScore W2587874048C121332964 @default.
- W2587874048 hasConceptScore W2587874048C121704057 @default.
- W2587874048 hasConceptScore W2587874048C126255220 @default.
- W2587874048 hasConceptScore W2587874048C127413603 @default.
- W2587874048 hasConceptScore W2587874048C1276947 @default.
- W2587874048 hasConceptScore W2587874048C133731056 @default.
- W2587874048 hasConceptScore W2587874048C13662910 @default.
- W2587874048 hasConceptScore W2587874048C146978453 @default.
- W2587874048 hasConceptScore W2587874048C154945302 @default.
- W2587874048 hasConceptScore W2587874048C158622935 @default.
- W2587874048 hasConceptScore W2587874048C203479927 @default.
- W2587874048 hasConceptScore W2587874048C2775924081 @default.
- W2587874048 hasConceptScore W2587874048C2780864053 @default.
- W2587874048 hasConceptScore W2587874048C29829512 @default.
- W2587874048 hasConceptScore W2587874048C33923547 @default.
- W2587874048 hasConceptScore W2587874048C38652104 @default.
- W2587874048 hasConceptScore W2587874048C41008148 @default.
- W2587874048 hasConceptScore W2587874048C47446073 @default.
- W2587874048 hasConceptScore W2587874048C62520636 @default.
- W2587874048 hasConceptScore W2587874048C6557445 @default.
- W2587874048 hasConceptScore W2587874048C86803240 @default.
- W2587874048 hasConceptScore W2587874048C91575142 @default.
- W2587874048 hasConceptScore W2587874048C91581856 @default.
- W2587874048 hasLocation W25878740481 @default.
- W2587874048 hasOpenAccess W2587874048 @default.
- W2587874048 hasPrimaryLocation W25878740481 @default.
- W2587874048 hasRelatedWork W1496352824 @default.
- W2587874048 hasRelatedWork W1524252729 @default.
- W2587874048 hasRelatedWork W1548054677 @default.
- W2587874048 hasRelatedWork W1592153977 @default.
- W2587874048 hasRelatedWork W1843357297 @default.
- W2587874048 hasRelatedWork W2016056790 @default.
- W2587874048 hasRelatedWork W2053908365 @default.
- W2587874048 hasRelatedWork W2060465646 @default.
- W2587874048 hasRelatedWork W2206029266 @default.
- W2587874048 hasRelatedWork W2294310530 @default.
- W2587874048 hasRelatedWork W2363084084 @default.
- W2587874048 hasRelatedWork W2387447479 @default.
- W2587874048 hasRelatedWork W2596034648 @default.
- W2587874048 hasRelatedWork W2745223722 @default.
- W2587874048 hasRelatedWork W2791887777 @default.
- W2587874048 hasRelatedWork W2898701723 @default.
- W2587874048 hasRelatedWork W296935808 @default.
- W2587874048 hasRelatedWork W2980627902 @default.
- W2587874048 hasRelatedWork W3119269101 @default.
- W2587874048 hasRelatedWork W3127833642 @default.
- W2587874048 isParatext "false" @default.
- W2587874048 isRetracted "false" @default.
- W2587874048 magId "2587874048" @default.
- W2587874048 workType "dissertation" @default.