Matches in SemOpenAlex for { <https://semopenalex.org/work/W2587979114> ?p ?o ?g. }
- W2587979114 abstract "<italic>Big data</italic> refers to large, complex, potentially linkable data from diverse sources, ranging from the genome and social media, to individual health information and the contributions of citizen science monitoring, to large-scale long-term oceanographic and climate modeling and its processing in innovative and integrated “data mashups.” Over the past few decades, thanks to the rapid expansion of computer technology, there has been a growing appreciation for the potential of big data in environment and human health research. The promise of big data mashups in environment and human health includes the ability to truly explore and understand the “wicked environment and health problems” of the 21st century, from tracking the global spread of the Zika and Ebola virus epidemics to modeling future climate change impacts and adaptation at the city or national level. Other opportunities include the possibility of identifying environment and health hot spots (i.e., locations where people and/or places are at particular risk), where innovative interventions can be designed and evaluated to prevent or adapt to climate and other environmental change over the long term with potential (co-) benefits for health; and of locating and filling gaps in existing knowledge of relevant linkages between environmental change and human health. There is the potential for the increasing control of personal data (both access to and generation of these data), benefits to health and the environment (e.g., from smart homes and cities), and opportunities to contribute via citizen science research and share information locally and globally. At the same time, there are challenges inherent with big data and data mashups, particularly in the environment and human health arena. Environment and health represent very diverse scientific areas with different research cultures, ethos, languages, and expertise. Equally diverse are the types of data involved (including time and spatial scales, and different types of modeled data), often with no standardization of the data to allow easy linkage beyond time and space variables, as data types are mostly shaped by the needs of the communities where they originated and have been used. Furthermore, these “secondary data” (i.e., data re-used in research) are often not even originated for this purpose, a particularly relevant distinction in the context of routine health data re-use. And the ways in which the research communities in health and environmental sciences approach data analysis and synthesis, as well as statistical and mathematical modeling, are widely different. There is a lack of trained personnel who can span these interdisciplinary divides or who have the necessary expertise in the techniques that make adequate bridging possible, such as software development, big data management and storage, and data analyses. Moreover, health data have unique challenges due to the need to maintain confidentiality and data privacy for the individuals or groups being studied, to evaluate the implications of shared information for the communities affected by research and big data, and to resolve the long-standing issues of intellectual property and data ownership occurring throughout the environment and health fields. As with other areas of big data, the new “digital data divide” is growing, where some researchers and research groups, or corporations and governments, have the access to data and computing resources while others do not, even as citizen participation in research initiatives is increasing. Finally with the exception of some business-related activities, funding, especially with the aim of encouraging the sustainability and accessibility of big data resources (from personnel to hardware), is currently inadequate; there is widespread disagreement over what business models can support long-term maintenance of data infrastructures, and those that exist now are often unable to deal with the complexity and resource-intensive nature of maintaining and updating these tools. Nevertheless, researchers, policy makers, funders, governments, the media, and members of the general public are increasingly recognizing the innovation and creativity potential of big data in environment and health and many other areas. This can be seen in how the relatively new and powerful movement of Open Data is being crystalized into science policy and funding guidelines. Some of the challenges and opportunities, as well as some salient examples, of the potential of big data and big data mashup applications to environment and human health research are discussed." @default.
- W2587979114 created "2017-02-24" @default.
- W2587979114 creator A5000571888 @default.
- W2587979114 creator A5016661663 @default.
- W2587979114 creator A5017176788 @default.
- W2587979114 creator A5017240327 @default.
- W2587979114 creator A5027303084 @default.
- W2587979114 creator A5040649251 @default.
- W2587979114 creator A5044055220 @default.
- W2587979114 creator A5067027277 @default.
- W2587979114 creator A5077554326 @default.
- W2587979114 creator A5079667228 @default.
- W2587979114 creator A5085715708 @default.
- W2587979114 creator A5087764978 @default.
- W2587979114 creator A5091494626 @default.
- W2587979114 date "2017-07-27" @default.
- W2587979114 modified "2023-10-16" @default.
- W2587979114 title "Big Data in Environment and Human Health" @default.
- W2587979114 cites W1500693574 @default.
- W2587979114 cites W1548849615 @default.
- W2587979114 cites W1568390176 @default.
- W2587979114 cites W1881329684 @default.
- W2587979114 cites W1934844772 @default.
- W2587979114 cites W1964803288 @default.
- W2587979114 cites W2008957977 @default.
- W2587979114 cites W2010500041 @default.
- W2587979114 cites W2026313323 @default.
- W2587979114 cites W2034525043 @default.
- W2587979114 cites W2039544364 @default.
- W2587979114 cites W2044661415 @default.
- W2587979114 cites W2045490444 @default.
- W2587979114 cites W2053857521 @default.
- W2587979114 cites W2053940732 @default.
- W2587979114 cites W2058125993 @default.
- W2587979114 cites W2064842021 @default.
- W2587979114 cites W2068181924 @default.
- W2587979114 cites W2074396925 @default.
- W2587979114 cites W2075378012 @default.
- W2587979114 cites W2075557608 @default.
- W2587979114 cites W2081259270 @default.
- W2587979114 cites W2096971036 @default.
- W2587979114 cites W2098386120 @default.
- W2587979114 cites W2104923010 @default.
- W2587979114 cites W2108510859 @default.
- W2587979114 cites W2109108939 @default.
- W2587979114 cites W2120297847 @default.
- W2587979114 cites W2120894392 @default.
- W2587979114 cites W2125302790 @default.
- W2587979114 cites W2127293276 @default.
- W2587979114 cites W2129397798 @default.
- W2587979114 cites W2146068062 @default.
- W2587979114 cites W2155354890 @default.
- W2587979114 cites W2155376333 @default.
- W2587979114 cites W2157647092 @default.
- W2587979114 cites W2158640797 @default.
- W2587979114 cites W2160542585 @default.
- W2587979114 cites W2162121633 @default.
- W2587979114 cites W2166445532 @default.
- W2587979114 cites W2166457153 @default.
- W2587979114 cites W2166865790 @default.
- W2587979114 cites W2169969573 @default.
- W2587979114 cites W2175751433 @default.
- W2587979114 cites W2302501749 @default.
- W2587979114 cites W2321301737 @default.
- W2587979114 cites W2328646621 @default.
- W2587979114 cites W2336950840 @default.
- W2587979114 cites W2346607019 @default.
- W2587979114 cites W2395795696 @default.
- W2587979114 cites W2415333711 @default.
- W2587979114 cites W2508424442 @default.
- W2587979114 cites W2523080212 @default.
- W2587979114 cites W2555391182 @default.
- W2587979114 cites W2556510859 @default.
- W2587979114 cites W2560468995 @default.
- W2587979114 cites W2967583913 @default.
- W2587979114 cites W3122747030 @default.
- W2587979114 cites W3125246103 @default.
- W2587979114 cites W564943520 @default.
- W2587979114 cites W2532425117 @default.
- W2587979114 doi "https://doi.org/10.1093/acrefore/9780199389414.013.541" @default.
- W2587979114 hasPublicationYear "2017" @default.
- W2587979114 type Work @default.
- W2587979114 sameAs 2587979114 @default.
- W2587979114 citedByCount "11" @default.
- W2587979114 countsByYear W25879791142018 @default.
- W2587979114 countsByYear W25879791142019 @default.
- W2587979114 countsByYear W25879791142020 @default.
- W2587979114 countsByYear W25879791142021 @default.
- W2587979114 countsByYear W25879791142022 @default.
- W2587979114 countsByYear W25879791142023 @default.
- W2587979114 crossrefType "reference-entry" @default.
- W2587979114 hasAuthorship W2587979114A5000571888 @default.
- W2587979114 hasAuthorship W2587979114A5016661663 @default.
- W2587979114 hasAuthorship W2587979114A5017176788 @default.
- W2587979114 hasAuthorship W2587979114A5017240327 @default.
- W2587979114 hasAuthorship W2587979114A5027303084 @default.
- W2587979114 hasAuthorship W2587979114A5040649251 @default.
- W2587979114 hasAuthorship W2587979114A5044055220 @default.
- W2587979114 hasAuthorship W2587979114A5067027277 @default.
- W2587979114 hasAuthorship W2587979114A5077554326 @default.