Matches in SemOpenAlex for { <https://semopenalex.org/work/W2588157869> ?p ?o ?g. }
- W2588157869 endingPage "185" @default.
- W2588157869 startingPage "176" @default.
- W2588157869 abstract "Many desired phenotypes for producing cellulosic biofuels are often observed in industrial Saccharomyces cerevisiae strains. However, many industrial yeast strains are polyploid and have low spore viability, making it difficult to use these strains for metabolic engineering applications. We selected the polyploid industrial strain S. cerevisiae ATCC 4124 exhibiting rapid glucose fermentation capability, high ethanol productivity, strong heat and inhibitor tolerance in order to construct an optimal yeast strain for producing cellulosic ethanol. Here, we focused on developing a general approach and high-throughput screening method to isolate stable haploid segregants derived from a polyploid parent, such as triploid ATCC 4124 with a poor spore viability. Specifically, we deleted the HO genes, performed random sporulation, and screened the resulting segregants based on growth rate, mating type, and ploidy. Only one stable haploid derivative (4124-S60) was isolated, while 14 other segregants with a stable mating type were aneuploid. The 4124-S60 strain inherited only a subset of desirable traits present in the parent strain, same as other aneuploids, suggesting that glucose fermentation and specific ethanol productivity are likely to be genetically complex traits and/or they might depend on ploidy. Nonetheless, the 4124-60 strain did inherit the ability to tolerate fermentation inhibitors. When additional genetic perturbations known to improve xylose fermentation were introduced into the 4124-60 strain, the resulting engineered strain (IIK1) was able to ferment a Miscanthus hydrolysate better than a previously engineered laboratory strain (SR8), built by making the same genetic changes. However, the IIK1 strain showed higher glycerol and xylitol yields than the SR8 strain. In order to decrease glycerol and xylitol production, an NADH-dependent acetate reduction pathway was introduced into the IIK1 strain. By consuming 2.4 g/L of acetate, the resulting strain (IIK1A) exhibited a 14% higher ethanol yield and 46% lower byproduct yield than the IIK1 strain from anaerobic fermentation of the Miscanthus hydrolysate. Our results demonstrate that industrial yeast strains can be engineered via haploid isolation. The isolated haploid strain (4124-S60) can be used for metabolic engineering to produce fuels and chemicals." @default.
- W2588157869 created "2017-02-24" @default.
- W2588157869 creator A5009440229 @default.
- W2588157869 creator A5019616813 @default.
- W2588157869 creator A5022751421 @default.
- W2588157869 creator A5032371536 @default.
- W2588157869 creator A5037421535 @default.
- W2588157869 creator A5047509474 @default.
- W2588157869 creator A5052389555 @default.
- W2588157869 creator A5065912208 @default.
- W2588157869 creator A5066245492 @default.
- W2588157869 creator A5082792635 @default.
- W2588157869 date "2017-03-01" @default.
- W2588157869 modified "2023-09-24" @default.
- W2588157869 title "Metabolic engineering of a haploid strain derived from a triploid industrial yeast for producing cellulosic ethanol" @default.
- W2588157869 cites W1490790924 @default.
- W2588157869 cites W1505936671 @default.
- W2588157869 cites W1515252291 @default.
- W2588157869 cites W1521434228 @default.
- W2588157869 cites W1657582590 @default.
- W2588157869 cites W1969562271 @default.
- W2588157869 cites W1974905046 @default.
- W2588157869 cites W1977164941 @default.
- W2588157869 cites W1985341534 @default.
- W2588157869 cites W1986494359 @default.
- W2588157869 cites W1990950816 @default.
- W2588157869 cites W1991427331 @default.
- W2588157869 cites W1994855175 @default.
- W2588157869 cites W1995764364 @default.
- W2588157869 cites W1997859335 @default.
- W2588157869 cites W2000870754 @default.
- W2588157869 cites W2001362170 @default.
- W2588157869 cites W2004622897 @default.
- W2588157869 cites W2006633399 @default.
- W2588157869 cites W2013163129 @default.
- W2588157869 cites W2013894933 @default.
- W2588157869 cites W2014939502 @default.
- W2588157869 cites W2019250529 @default.
- W2588157869 cites W2019250729 @default.
- W2588157869 cites W2033639139 @default.
- W2588157869 cites W2036200277 @default.
- W2588157869 cites W2038591876 @default.
- W2588157869 cites W2039013541 @default.
- W2588157869 cites W2039522748 @default.
- W2588157869 cites W2041768703 @default.
- W2588157869 cites W2047684202 @default.
- W2588157869 cites W2060718895 @default.
- W2588157869 cites W2060756795 @default.
- W2588157869 cites W2061543020 @default.
- W2588157869 cites W2079904605 @default.
- W2588157869 cites W2080704515 @default.
- W2588157869 cites W2082389963 @default.
- W2588157869 cites W2090357145 @default.
- W2588157869 cites W2096220064 @default.
- W2588157869 cites W2102265971 @default.
- W2588157869 cites W2102366182 @default.
- W2588157869 cites W2104769482 @default.
- W2588157869 cites W2104781647 @default.
- W2588157869 cites W2115519265 @default.
- W2588157869 cites W2118408931 @default.
- W2588157869 cites W2121356177 @default.
- W2588157869 cites W2123693836 @default.
- W2588157869 cites W2126764428 @default.
- W2588157869 cites W2129319315 @default.
- W2588157869 cites W2132353659 @default.
- W2588157869 cites W2139522960 @default.
- W2588157869 cites W2141374544 @default.
- W2588157869 cites W2142315987 @default.
- W2588157869 cites W2142449740 @default.
- W2588157869 cites W2142907337 @default.
- W2588157869 cites W2144989638 @default.
- W2588157869 cites W2146549342 @default.
- W2588157869 cites W2148269983 @default.
- W2588157869 cites W2156740465 @default.
- W2588157869 cites W2160944326 @default.
- W2588157869 cites W2163531785 @default.
- W2588157869 cites W2166862691 @default.
- W2588157869 cites W2167465386 @default.
- W2588157869 cites W2170392103 @default.
- W2588157869 cites W2171679524 @default.
- W2588157869 cites W2220204085 @default.
- W2588157869 cites W2238532141 @default.
- W2588157869 cites W2417978946 @default.
- W2588157869 cites W2438481482 @default.
- W2588157869 cites W262452561 @default.
- W2588157869 doi "https://doi.org/10.1016/j.ymben.2017.02.006" @default.
- W2588157869 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28216106" @default.
- W2588157869 hasPublicationYear "2017" @default.
- W2588157869 type Work @default.
- W2588157869 sameAs 2588157869 @default.
- W2588157869 citedByCount "23" @default.
- W2588157869 countsByYear W25881578692017 @default.
- W2588157869 countsByYear W25881578692018 @default.
- W2588157869 countsByYear W25881578692019 @default.
- W2588157869 countsByYear W25881578692020 @default.
- W2588157869 countsByYear W25881578692021 @default.
- W2588157869 countsByYear W25881578692022 @default.
- W2588157869 countsByYear W25881578692023 @default.