Matches in SemOpenAlex for { <https://semopenalex.org/work/W2588196524> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2588196524 abstract "This paper proposes a novel regression approach to binaural speech segregation based on deep neural network (DNN). In contrast to the conventional ideal binary mask (IBM) method using DNN with the interaural time difference (ITD) and in-teraural level difference (ILD) as the auditory features, the log-power spectra (LPS) features of target speech are directly predicted via a regression DNN model by concatenating the monaural LPS features and the binaural features as the input. As for the binaural features, the sub-band ILDs based on LPS features are designed which are verified to be more effective than the full-band ILDs. Our experiments show that our proposed approach can significantly outperform IBM-based speech segregation in terms of both objective measures of speech quality and speech intelligibility for noisy and reverberant environments." @default.
- W2588196524 created "2017-02-24" @default.
- W2588196524 creator A5039269078 @default.
- W2588196524 creator A5057227915 @default.
- W2588196524 creator A5066595711 @default.
- W2588196524 date "2016-10-01" @default.
- W2588196524 modified "2023-10-16" @default.
- W2588196524 title "A regression approach to binaural speech segregation via deep neural network" @default.
- W2588196524 cites W1498436455 @default.
- W2588196524 cites W1603327663 @default.
- W2588196524 cites W160800111 @default.
- W2588196524 cites W1635512741 @default.
- W2588196524 cites W1931312565 @default.
- W2588196524 cites W1968939597 @default.
- W2588196524 cites W1989364685 @default.
- W2588196524 cites W1991176864 @default.
- W2588196524 cites W1992879732 @default.
- W2588196524 cites W2031647436 @default.
- W2588196524 cites W2034040413 @default.
- W2588196524 cites W2044063703 @default.
- W2588196524 cites W2044893557 @default.
- W2588196524 cites W2078528584 @default.
- W2588196524 cites W2085191029 @default.
- W2588196524 cites W2100495367 @default.
- W2588196524 cites W2128653836 @default.
- W2588196524 cites W2136922672 @default.
- W2588196524 cites W2141411743 @default.
- W2588196524 cites W2141998673 @default.
- W2588196524 cites W2150866759 @default.
- W2588196524 cites W2168379380 @default.
- W2588196524 cites W4233392025 @default.
- W2588196524 doi "https://doi.org/10.1109/iscslp.2016.7918387" @default.
- W2588196524 hasPublicationYear "2016" @default.
- W2588196524 type Work @default.
- W2588196524 sameAs 2588196524 @default.
- W2588196524 citedByCount "10" @default.
- W2588196524 countsByYear W25881965242017 @default.
- W2588196524 countsByYear W25881965242018 @default.
- W2588196524 countsByYear W25881965242020 @default.
- W2588196524 countsByYear W25881965242021 @default.
- W2588196524 countsByYear W25881965242022 @default.
- W2588196524 countsByYear W25881965242023 @default.
- W2588196524 crossrefType "proceedings-article" @default.
- W2588196524 hasAuthorship W2588196524A5039269078 @default.
- W2588196524 hasAuthorship W2588196524A5057227915 @default.
- W2588196524 hasAuthorship W2588196524A5066595711 @default.
- W2588196524 hasConcept C105795698 @default.
- W2588196524 hasConcept C119857082 @default.
- W2588196524 hasConcept C152877465 @default.
- W2588196524 hasConcept C154945302 @default.
- W2588196524 hasConcept C201247586 @default.
- W2588196524 hasConcept C28490314 @default.
- W2588196524 hasConcept C2984842247 @default.
- W2588196524 hasConcept C33923547 @default.
- W2588196524 hasConcept C41008148 @default.
- W2588196524 hasConcept C50644808 @default.
- W2588196524 hasConcept C83546350 @default.
- W2588196524 hasConceptScore W2588196524C105795698 @default.
- W2588196524 hasConceptScore W2588196524C119857082 @default.
- W2588196524 hasConceptScore W2588196524C152877465 @default.
- W2588196524 hasConceptScore W2588196524C154945302 @default.
- W2588196524 hasConceptScore W2588196524C201247586 @default.
- W2588196524 hasConceptScore W2588196524C28490314 @default.
- W2588196524 hasConceptScore W2588196524C2984842247 @default.
- W2588196524 hasConceptScore W2588196524C33923547 @default.
- W2588196524 hasConceptScore W2588196524C41008148 @default.
- W2588196524 hasConceptScore W2588196524C50644808 @default.
- W2588196524 hasConceptScore W2588196524C83546350 @default.
- W2588196524 hasLocation W25881965241 @default.
- W2588196524 hasOpenAccess W2588196524 @default.
- W2588196524 hasPrimaryLocation W25881965241 @default.
- W2588196524 hasRelatedWork W1970158984 @default.
- W2588196524 hasRelatedWork W2010414829 @default.
- W2588196524 hasRelatedWork W2072034916 @default.
- W2588196524 hasRelatedWork W2183168381 @default.
- W2588196524 hasRelatedWork W2359645249 @default.
- W2588196524 hasRelatedWork W2373564364 @default.
- W2588196524 hasRelatedWork W2403228223 @default.
- W2588196524 hasRelatedWork W2405951208 @default.
- W2588196524 hasRelatedWork W2626871203 @default.
- W2588196524 hasRelatedWork W3176894857 @default.
- W2588196524 isParatext "false" @default.
- W2588196524 isRetracted "false" @default.
- W2588196524 magId "2588196524" @default.
- W2588196524 workType "article" @default.