Matches in SemOpenAlex for { <https://semopenalex.org/work/W2588218467> ?p ?o ?g. }
- W2588218467 endingPage "3328" @default.
- W2588218467 startingPage "3311" @default.
- W2588218467 abstract "Control loop performance assessment (CLPA) techniques assume that the data being analyzed is generated during steady state operation with fixed plant dynamics and controller parameters. However, in industrial settings one often encounters environmental and feedstock variations which can induce significant changes in the plant dynamics. Availability of data sets corresponding to fixed configurations is therefore questionable in industrial scenarios, in which case it becomes imperative to extract the same from routine plant operating data. This article proposes a technique for segmenting multivariate control loop data into portions corresponding to fixed steady state operation of the system. The proposed technique exploits the fact that changes in the operating region of the system lead to changes in variance-covariance matrix of multivariate control loop data. The univariate interval halving technique is fused with Mahalanobis distance to develop a multivariate tool that accounts for interactions between variables. The resulting data segments can be used for reliable CLPA and/or for user defined benchmarking of control loops. A multivariate control loop performance index is also proposed that requires significantly less data as compared to one of the previously proposed techniques. The proposed technique requires only routine operating data from the plant, and is tested on benchmark systems in the literature with simulations. Experimental validation on a model predictive control system aimed at maintaining the temperature profile of a metal plate demonstrates applicability of the technique to industrial systems. The proposed technique acts as a tool for preprocessing data relevant to CLPA and can be applied to large scale interacting multivariate systems. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3311–3328, 2017" @default.
- W2588218467 created "2017-02-24" @default.
- W2588218467 creator A5032442456 @default.
- W2588218467 creator A5082473942 @default.
- W2588218467 creator A5087468931 @default.
- W2588218467 date "2017-03-09" @default.
- W2588218467 modified "2023-09-26" @default.
- W2588218467 title "Data mining and control loop performance assessment: The multivariate case" @default.
- W2588218467 cites W1517900436 @default.
- W2588218467 cites W1971770289 @default.
- W2588218467 cites W1974084286 @default.
- W2588218467 cites W1991340514 @default.
- W2588218467 cites W2001849452 @default.
- W2588218467 cites W2008830235 @default.
- W2588218467 cites W2030295995 @default.
- W2588218467 cites W2039131992 @default.
- W2588218467 cites W2042489644 @default.
- W2588218467 cites W2043570933 @default.
- W2588218467 cites W2051983871 @default.
- W2588218467 cites W2052721462 @default.
- W2588218467 cites W2056400683 @default.
- W2588218467 cites W2064343721 @default.
- W2588218467 cites W2066367454 @default.
- W2588218467 cites W2071385161 @default.
- W2588218467 cites W2071451458 @default.
- W2588218467 cites W2076249369 @default.
- W2588218467 cites W2078025160 @default.
- W2588218467 cites W2088109468 @default.
- W2588218467 cites W2106849258 @default.
- W2588218467 cites W2119683791 @default.
- W2588218467 cites W2133979513 @default.
- W2588218467 cites W2137300256 @default.
- W2588218467 cites W2138150605 @default.
- W2588218467 cites W2322097696 @default.
- W2588218467 cites W2335891820 @default.
- W2588218467 cites W2486399523 @default.
- W2588218467 doi "https://doi.org/10.1002/aic.15689" @default.
- W2588218467 hasPublicationYear "2017" @default.
- W2588218467 type Work @default.
- W2588218467 sameAs 2588218467 @default.
- W2588218467 citedByCount "12" @default.
- W2588218467 countsByYear W25882184672017 @default.
- W2588218467 countsByYear W25882184672018 @default.
- W2588218467 countsByYear W25882184672019 @default.
- W2588218467 countsByYear W25882184672020 @default.
- W2588218467 countsByYear W25882184672021 @default.
- W2588218467 countsByYear W25882184672022 @default.
- W2588218467 countsByYear W25882184672023 @default.
- W2588218467 crossrefType "journal-article" @default.
- W2588218467 hasAuthorship W2588218467A5032442456 @default.
- W2588218467 hasAuthorship W2588218467A5082473942 @default.
- W2588218467 hasAuthorship W2588218467A5087468931 @default.
- W2588218467 hasConcept C119599485 @default.
- W2588218467 hasConcept C119857082 @default.
- W2588218467 hasConcept C124101348 @default.
- W2588218467 hasConcept C127413603 @default.
- W2588218467 hasConcept C13280743 @default.
- W2588218467 hasConcept C144133560 @default.
- W2588218467 hasConcept C154945302 @default.
- W2588218467 hasConcept C161584116 @default.
- W2588218467 hasConcept C162853370 @default.
- W2588218467 hasConcept C17500928 @default.
- W2588218467 hasConcept C185798385 @default.
- W2588218467 hasConcept C199163554 @default.
- W2588218467 hasConcept C203479927 @default.
- W2588218467 hasConcept C205649164 @default.
- W2588218467 hasConcept C2775924081 @default.
- W2588218467 hasConcept C2781067378 @default.
- W2588218467 hasConcept C41008148 @default.
- W2588218467 hasConcept C47446073 @default.
- W2588218467 hasConcept C6557445 @default.
- W2588218467 hasConcept C86251818 @default.
- W2588218467 hasConcept C86803240 @default.
- W2588218467 hasConceptScore W2588218467C119599485 @default.
- W2588218467 hasConceptScore W2588218467C119857082 @default.
- W2588218467 hasConceptScore W2588218467C124101348 @default.
- W2588218467 hasConceptScore W2588218467C127413603 @default.
- W2588218467 hasConceptScore W2588218467C13280743 @default.
- W2588218467 hasConceptScore W2588218467C144133560 @default.
- W2588218467 hasConceptScore W2588218467C154945302 @default.
- W2588218467 hasConceptScore W2588218467C161584116 @default.
- W2588218467 hasConceptScore W2588218467C162853370 @default.
- W2588218467 hasConceptScore W2588218467C17500928 @default.
- W2588218467 hasConceptScore W2588218467C185798385 @default.
- W2588218467 hasConceptScore W2588218467C199163554 @default.
- W2588218467 hasConceptScore W2588218467C203479927 @default.
- W2588218467 hasConceptScore W2588218467C205649164 @default.
- W2588218467 hasConceptScore W2588218467C2775924081 @default.
- W2588218467 hasConceptScore W2588218467C2781067378 @default.
- W2588218467 hasConceptScore W2588218467C41008148 @default.
- W2588218467 hasConceptScore W2588218467C47446073 @default.
- W2588218467 hasConceptScore W2588218467C6557445 @default.
- W2588218467 hasConceptScore W2588218467C86251818 @default.
- W2588218467 hasConceptScore W2588218467C86803240 @default.
- W2588218467 hasIssue "8" @default.
- W2588218467 hasLocation W25882184671 @default.
- W2588218467 hasOpenAccess W2588218467 @default.
- W2588218467 hasPrimaryLocation W25882184671 @default.