Matches in SemOpenAlex for { <https://semopenalex.org/work/W2588263438> ?p ?o ?g. }
- W2588263438 abstract "A new efficient training algorithm for a Dendrite Morphological Neural Network is proposed. Based on Differential Evolution, the method optimizes the number of dendrites and increases classification performance. This technique has two initialisation ways of learning parameters. The first selects all the patterns and opens a hyper-box per class with a length such that all the patterns of each class remain inside. The second generates clusters for each class by k-means++. After the initialisation, the algorithm divides each hyper-box and applies Differential Evolution to the resultant hyper-boxes to place them in the best position and the best size. Finally, the method selects the set of hyper-boxes that produced the least error from the least number. The new training method was tested with three synthetic and six real databases showing superiority over the state-of-the-art for Dendrite Morphological Neural Network training algorithms and a similar performance as well as a Multilayer Perceptron, a Support Vector Machine and a Radial Basis Network." @default.
- W2588263438 created "2017-02-24" @default.
- W2588263438 creator A5007636051 @default.
- W2588263438 creator A5007821786 @default.
- W2588263438 creator A5046030820 @default.
- W2588263438 creator A5057383073 @default.
- W2588263438 date "2016-12-01" @default.
- W2588263438 modified "2023-09-26" @default.
- W2588263438 title "Dendrite Morphological Neural Networks trained by Differential Evolution" @default.
- W2588263438 cites W128022732 @default.
- W2588263438 cites W1521297298 @default.
- W2588263438 cites W1536929369 @default.
- W2588263438 cites W1540852386 @default.
- W2588263438 cites W157497797 @default.
- W2588263438 cites W1595159159 @default.
- W2588263438 cites W1602295516 @default.
- W2588263438 cites W1879678483 @default.
- W2588263438 cites W194800985 @default.
- W2588263438 cites W1966639131 @default.
- W2588263438 cites W1978236354 @default.
- W2588263438 cites W2031888308 @default.
- W2588263438 cites W2045151223 @default.
- W2588263438 cites W2061550403 @default.
- W2588263438 cites W2073074703 @default.
- W2588263438 cites W2073459066 @default.
- W2588263438 cites W2087263643 @default.
- W2588263438 cites W2104307771 @default.
- W2588263438 cites W2104622509 @default.
- W2588263438 cites W2119821739 @default.
- W2588263438 cites W2120865009 @default.
- W2588263438 cites W2122776051 @default.
- W2588263438 cites W2133426494 @default.
- W2588263438 cites W2133990480 @default.
- W2588263438 cites W2156369417 @default.
- W2588263438 cites W2468811940 @default.
- W2588263438 cites W2505589656 @default.
- W2588263438 cites W3120740533 @default.
- W2588263438 cites W3142697981 @default.
- W2588263438 cites W3142705402 @default.
- W2588263438 cites W3207342693 @default.
- W2588263438 cites W787537876 @default.
- W2588263438 cites W94523489 @default.
- W2588263438 doi "https://doi.org/10.1109/ssci.2016.7850259" @default.
- W2588263438 hasPublicationYear "2016" @default.
- W2588263438 type Work @default.
- W2588263438 sameAs 2588263438 @default.
- W2588263438 citedByCount "7" @default.
- W2588263438 countsByYear W25882634382017 @default.
- W2588263438 countsByYear W25882634382018 @default.
- W2588263438 crossrefType "proceedings-article" @default.
- W2588263438 hasAuthorship W2588263438A5007636051 @default.
- W2588263438 hasAuthorship W2588263438A5007821786 @default.
- W2588263438 hasAuthorship W2588263438A5046030820 @default.
- W2588263438 hasAuthorship W2588263438A5057383073 @default.
- W2588263438 hasConcept C10138342 @default.
- W2588263438 hasConcept C11413529 @default.
- W2588263438 hasConcept C127413603 @default.
- W2588263438 hasConcept C146978453 @default.
- W2588263438 hasConcept C153180895 @default.
- W2588263438 hasConcept C154945302 @default.
- W2588263438 hasConcept C162324750 @default.
- W2588263438 hasConcept C177264268 @default.
- W2588263438 hasConcept C198082294 @default.
- W2588263438 hasConcept C199360897 @default.
- W2588263438 hasConcept C2524010 @default.
- W2588263438 hasConcept C2777212361 @default.
- W2588263438 hasConcept C33923547 @default.
- W2588263438 hasConcept C41008148 @default.
- W2588263438 hasConcept C50644808 @default.
- W2588263438 hasConcept C60908668 @default.
- W2588263438 hasConcept C74750220 @default.
- W2588263438 hasConcept C84248122 @default.
- W2588263438 hasConcept C93226319 @default.
- W2588263438 hasConceptScore W2588263438C10138342 @default.
- W2588263438 hasConceptScore W2588263438C11413529 @default.
- W2588263438 hasConceptScore W2588263438C127413603 @default.
- W2588263438 hasConceptScore W2588263438C146978453 @default.
- W2588263438 hasConceptScore W2588263438C153180895 @default.
- W2588263438 hasConceptScore W2588263438C154945302 @default.
- W2588263438 hasConceptScore W2588263438C162324750 @default.
- W2588263438 hasConceptScore W2588263438C177264268 @default.
- W2588263438 hasConceptScore W2588263438C198082294 @default.
- W2588263438 hasConceptScore W2588263438C199360897 @default.
- W2588263438 hasConceptScore W2588263438C2524010 @default.
- W2588263438 hasConceptScore W2588263438C2777212361 @default.
- W2588263438 hasConceptScore W2588263438C33923547 @default.
- W2588263438 hasConceptScore W2588263438C41008148 @default.
- W2588263438 hasConceptScore W2588263438C50644808 @default.
- W2588263438 hasConceptScore W2588263438C60908668 @default.
- W2588263438 hasConceptScore W2588263438C74750220 @default.
- W2588263438 hasConceptScore W2588263438C84248122 @default.
- W2588263438 hasConceptScore W2588263438C93226319 @default.
- W2588263438 hasLocation W25882634381 @default.
- W2588263438 hasOpenAccess W2588263438 @default.
- W2588263438 hasPrimaryLocation W25882634381 @default.
- W2588263438 hasRelatedWork W1489744657 @default.
- W2588263438 hasRelatedWork W1581245121 @default.
- W2588263438 hasRelatedWork W1950907298 @default.
- W2588263438 hasRelatedWork W1990046384 @default.
- W2588263438 hasRelatedWork W1990938632 @default.