Matches in SemOpenAlex for { <https://semopenalex.org/work/W2588343372> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2588343372 abstract "Proliferation of the World Wide Web has massively increased the availability of textual data in recent years, presenting a challenge for researchers to maximise the usage of this data with minimum human intervention. The field of text mining research has emerged as a solution to this, focusing on the development of new techniques to discover useful knowledge from these large volumes of text data. The main research challenges in the text mining field are; (a) unstructured nature of the text (b) capturing semantics information (c) coping with a large number of words and the structure of the natural language. There have been many different techniques proposed in the text mining literature trying to address the above mentioned challenges individually or as a combination. The Self Organizing Feature Map (SOM) algorithm is one of the most successful and widely used techniques among all these and has been extended for diverse text mining tasks.The primary aim of this thesis is to provide a more efficient autonomous incremental text clustering model. Also, improving the semantic aspects of the text clustering process is examined. A Fast Scalable Growing Self Organizing Map (FSGSOM) algorithm is proposed to provide a more efficient autonomous clustering of text based on the dynamic topology preservation capabilities of the Growing Self Organizing Map (GSOM) algorithm. To enrich the semantic capabilities, a dynamic variable length sequence based feature selection model is integrated into the feature selection phase. As an additional method of incorporating semantics, Wikipedia is used as a background information source in result interpretation.As most of the text information available is not stationary, an incremental learning model based on the FSGSOM clustering is proposed to handle non-stationary text information. The proposed model consists of a semi-continuous text processing model together with an evolving hierarchy of concepts to generalise and preserve the learning outcomes for future training. A template based document selection mechanism is utilised to form lateral connection across the different phases of learning. In summary, this thesis proposes a more efficient incremental text clustering and knowledge preservation model contributing to the field of text mining research." @default.
- W2588343372 created "2017-02-24" @default.
- W2588343372 creator A5043147407 @default.
- W2588343372 date "2017-02-14" @default.
- W2588343372 modified "2023-09-24" @default.
- W2588343372 title "An autonomous incremental learning model for efficient mining of text data" @default.
- W2588343372 doi "https://doi.org/10.4225/03/58a27186615ce" @default.
- W2588343372 hasPublicationYear "2017" @default.
- W2588343372 type Work @default.
- W2588343372 sameAs 2588343372 @default.
- W2588343372 citedByCount "1" @default.
- W2588343372 countsByYear W25883433722016 @default.
- W2588343372 crossrefType "dissertation" @default.
- W2588343372 hasAuthorship W2588343372A5043147407 @default.
- W2588343372 hasConcept C119857082 @default.
- W2588343372 hasConcept C124101348 @default.
- W2588343372 hasConcept C148483581 @default.
- W2588343372 hasConcept C154945302 @default.
- W2588343372 hasConcept C202444582 @default.
- W2588343372 hasConcept C23123220 @default.
- W2588343372 hasConcept C33923547 @default.
- W2588343372 hasConcept C41008148 @default.
- W2588343372 hasConcept C48044578 @default.
- W2588343372 hasConcept C71472368 @default.
- W2588343372 hasConcept C73555534 @default.
- W2588343372 hasConcept C77088390 @default.
- W2588343372 hasConcept C9652623 @default.
- W2588343372 hasConceptScore W2588343372C119857082 @default.
- W2588343372 hasConceptScore W2588343372C124101348 @default.
- W2588343372 hasConceptScore W2588343372C148483581 @default.
- W2588343372 hasConceptScore W2588343372C154945302 @default.
- W2588343372 hasConceptScore W2588343372C202444582 @default.
- W2588343372 hasConceptScore W2588343372C23123220 @default.
- W2588343372 hasConceptScore W2588343372C33923547 @default.
- W2588343372 hasConceptScore W2588343372C41008148 @default.
- W2588343372 hasConceptScore W2588343372C48044578 @default.
- W2588343372 hasConceptScore W2588343372C71472368 @default.
- W2588343372 hasConceptScore W2588343372C73555534 @default.
- W2588343372 hasConceptScore W2588343372C77088390 @default.
- W2588343372 hasConceptScore W2588343372C9652623 @default.
- W2588343372 hasLocation W25883433721 @default.
- W2588343372 hasOpenAccess W2588343372 @default.
- W2588343372 hasPrimaryLocation W25883433721 @default.
- W2588343372 hasRelatedWork W1600811203 @default.
- W2588343372 hasRelatedWork W175943842 @default.
- W2588343372 hasRelatedWork W1997181511 @default.
- W2588343372 hasRelatedWork W2041978266 @default.
- W2588343372 hasRelatedWork W2092045293 @default.
- W2588343372 hasRelatedWork W2157928201 @default.
- W2588343372 hasRelatedWork W2183822390 @default.
- W2588343372 hasRelatedWork W2247997021 @default.
- W2588343372 hasRelatedWork W2529148578 @default.
- W2588343372 hasRelatedWork W2559153168 @default.
- W2588343372 hasRelatedWork W2573641612 @default.
- W2588343372 hasRelatedWork W2576945610 @default.
- W2588343372 hasRelatedWork W2740777304 @default.
- W2588343372 hasRelatedWork W2788641582 @default.
- W2588343372 hasRelatedWork W2796304270 @default.
- W2588343372 hasRelatedWork W2951625886 @default.
- W2588343372 hasRelatedWork W2964533157 @default.
- W2588343372 hasRelatedWork W2965340896 @default.
- W2588343372 hasRelatedWork W2972170549 @default.
- W2588343372 hasRelatedWork W2987317881 @default.
- W2588343372 isParatext "false" @default.
- W2588343372 isRetracted "false" @default.
- W2588343372 magId "2588343372" @default.
- W2588343372 workType "dissertation" @default.