Matches in SemOpenAlex for { <https://semopenalex.org/work/W2588392271> ?p ?o ?g. }
- W2588392271 endingPage "149" @default.
- W2588392271 startingPage "138" @default.
- W2588392271 abstract "The vibration signal of rolling bearing is usually complex and the useful fault information is hidden in the background noise, therefore, it is a challenge to identify rolling bearing faults from the complex vibration environment. In this paper, a novel multilayer deep learning convolutional neural network (CNN) method to identify rollings bearing fault is proposed. Firstly, in order to avoid the influence of different characteristics of the input data on the identification accuracy, a normalization preprocessing method is applied to preprocess the vibration signals of rolling bearings. Secondly, a multilayer CNN based on deep learning is designed in this paper to improve the fault identification accuracy of rolling bearing. Simulation data and experimental data analysis results show that the proposed method has better performance than SVM method and ANN method without any manual feature extractor design." @default.
- W2588392271 created "2017-02-24" @default.
- W2588392271 creator A5004091327 @default.
- W2588392271 creator A5019493589 @default.
- W2588392271 creator A5052658396 @default.
- W2588392271 creator A5055413760 @default.
- W2588392271 date "2017-02-15" @default.
- W2588392271 modified "2023-09-25" @default.
- W2588392271 title "Rolling bearing fault identification using multilayer deep learning convolutional neural network" @default.
- W2588392271 cites W1034159276 @default.
- W2588392271 cites W1173228497 @default.
- W2588392271 cites W1937731213 @default.
- W2588392271 cites W1979117586 @default.
- W2588392271 cites W1991941961 @default.
- W2588392271 cites W1995562189 @default.
- W2588392271 cites W2004039783 @default.
- W2588392271 cites W2032305183 @default.
- W2588392271 cites W2033310064 @default.
- W2588392271 cites W2040070030 @default.
- W2588392271 cites W2063016254 @default.
- W2588392271 cites W2063483719 @default.
- W2588392271 cites W2071908367 @default.
- W2588392271 cites W2076063813 @default.
- W2588392271 cites W2076904570 @default.
- W2588392271 cites W2077619971 @default.
- W2588392271 cites W2093866254 @default.
- W2588392271 cites W2120163187 @default.
- W2588392271 cites W2136922672 @default.
- W2588392271 cites W2195063230 @default.
- W2588392271 cites W2230524333 @default.
- W2588392271 cites W2280977705 @default.
- W2588392271 cites W2403986326 @default.
- W2588392271 cites W2919115771 @default.
- W2588392271 doi "https://doi.org/10.21595/jve.2016.16939" @default.
- W2588392271 hasPublicationYear "2017" @default.
- W2588392271 type Work @default.
- W2588392271 sameAs 2588392271 @default.
- W2588392271 citedByCount "23" @default.
- W2588392271 countsByYear W25883922712017 @default.
- W2588392271 countsByYear W25883922712018 @default.
- W2588392271 countsByYear W25883922712019 @default.
- W2588392271 countsByYear W25883922712020 @default.
- W2588392271 countsByYear W25883922712021 @default.
- W2588392271 countsByYear W25883922712022 @default.
- W2588392271 countsByYear W25883922712023 @default.
- W2588392271 crossrefType "journal-article" @default.
- W2588392271 hasAuthorship W2588392271A5004091327 @default.
- W2588392271 hasAuthorship W2588392271A5019493589 @default.
- W2588392271 hasAuthorship W2588392271A5052658396 @default.
- W2588392271 hasAuthorship W2588392271A5055413760 @default.
- W2588392271 hasBestOaLocation W25883922711 @default.
- W2588392271 hasConcept C10551718 @default.
- W2588392271 hasConcept C108583219 @default.
- W2588392271 hasConcept C121332964 @default.
- W2588392271 hasConcept C127313418 @default.
- W2588392271 hasConcept C136886441 @default.
- W2588392271 hasConcept C144024400 @default.
- W2588392271 hasConcept C153180895 @default.
- W2588392271 hasConcept C154945302 @default.
- W2588392271 hasConcept C165205528 @default.
- W2588392271 hasConcept C175551986 @default.
- W2588392271 hasConcept C19165224 @default.
- W2588392271 hasConcept C198394728 @default.
- W2588392271 hasConcept C199978012 @default.
- W2588392271 hasConcept C24890656 @default.
- W2588392271 hasConcept C34736171 @default.
- W2588392271 hasConcept C41008148 @default.
- W2588392271 hasConcept C50644808 @default.
- W2588392271 hasConcept C52622490 @default.
- W2588392271 hasConcept C81363708 @default.
- W2588392271 hasConceptScore W2588392271C10551718 @default.
- W2588392271 hasConceptScore W2588392271C108583219 @default.
- W2588392271 hasConceptScore W2588392271C121332964 @default.
- W2588392271 hasConceptScore W2588392271C127313418 @default.
- W2588392271 hasConceptScore W2588392271C136886441 @default.
- W2588392271 hasConceptScore W2588392271C144024400 @default.
- W2588392271 hasConceptScore W2588392271C153180895 @default.
- W2588392271 hasConceptScore W2588392271C154945302 @default.
- W2588392271 hasConceptScore W2588392271C165205528 @default.
- W2588392271 hasConceptScore W2588392271C175551986 @default.
- W2588392271 hasConceptScore W2588392271C19165224 @default.
- W2588392271 hasConceptScore W2588392271C198394728 @default.
- W2588392271 hasConceptScore W2588392271C199978012 @default.
- W2588392271 hasConceptScore W2588392271C24890656 @default.
- W2588392271 hasConceptScore W2588392271C34736171 @default.
- W2588392271 hasConceptScore W2588392271C41008148 @default.
- W2588392271 hasConceptScore W2588392271C50644808 @default.
- W2588392271 hasConceptScore W2588392271C52622490 @default.
- W2588392271 hasConceptScore W2588392271C81363708 @default.
- W2588392271 hasIssue "1" @default.
- W2588392271 hasLocation W25883922711 @default.
- W2588392271 hasOpenAccess W2588392271 @default.
- W2588392271 hasPrimaryLocation W25883922711 @default.
- W2588392271 hasRelatedWork W2098155230 @default.
- W2588392271 hasRelatedWork W2279398222 @default.
- W2588392271 hasRelatedWork W2352072136 @default.
- W2588392271 hasRelatedWork W2732542196 @default.
- W2588392271 hasRelatedWork W2773120646 @default.