Matches in SemOpenAlex for { <https://semopenalex.org/work/W2588392831> ?p ?o ?g. }
- W2588392831 endingPage "48" @default.
- W2588392831 startingPage "29" @default.
- W2588392831 abstract "In data science, there are important parameters that affect the accuracy of the algorithms used. Some of these parameters are: the type of data objects, the membership assignments, and distance or similarity functions. In this chapter we describe different data typesData type , membership functionsMembership function , and similarity functions and discuss the pros and cons of using each of them. Conventional similarity functions evaluate objects in the vector space. Contrarily, Weighted Feature DistanceWeighted feature distance (WFD) functions compare data objects in both feature and vector spaces, preventing the system from being affected by some dominant features. Traditional membership functionsMembership function assign membership values to data objects but impose some restrictions. Bounded Fuzzy Possibilistic MethodBounded fuzzy-possibilistic method (BFPM) makes possible for data objects to participate fully or partially in several clusters or even in all clusters. BFPM introduces intervals for the upper and lower boundaries for data objects with respect to each cluster. BFPM facilitates algorithms to converge and also inherits the abilities of conventional fuzzy and possibilistic methods. In Big DataBig data applications knowing the exact type of data objects and selecting the most accurate similarity [1] and membership assignments is crucial in decreasing computing costs and obtaining the best performance. This chapter provides data typesData type taxonomies to assist data miners in selecting the right learning method on each selected data set. Examples illustrate how to evaluate the accuracy and performance of the proposed algorithms. Experimental results show why these parameters are important." @default.
- W2588392831 created "2017-02-24" @default.
- W2588392831 creator A5000506074 @default.
- W2588392831 creator A5015629453 @default.
- W2588392831 creator A5032429408 @default.
- W2588392831 creator A5045769686 @default.
- W2588392831 date "2017-01-01" @default.
- W2588392831 modified "2023-10-03" @default.
- W2588392831 title "On High Dimensional Searching Spaces and Learning Methods" @default.
- W2588392831 cites W1554338108 @default.
- W2588392831 cites W1562135275 @default.
- W2588392831 cites W1870669718 @default.
- W2588392831 cites W1906232516 @default.
- W2588392831 cites W1912497050 @default.
- W2588392831 cites W1975330620 @default.
- W2588392831 cites W1982635649 @default.
- W2588392831 cites W1987098293 @default.
- W2588392831 cites W1989907351 @default.
- W2588392831 cites W1991727646 @default.
- W2588392831 cites W1998334300 @default.
- W2588392831 cites W2006533296 @default.
- W2588392831 cites W2026984134 @default.
- W2588392831 cites W2030827420 @default.
- W2588392831 cites W2035104901 @default.
- W2588392831 cites W2056884786 @default.
- W2588392831 cites W2063958428 @default.
- W2588392831 cites W2064128636 @default.
- W2588392831 cites W207495998 @default.
- W2588392831 cites W2075742731 @default.
- W2588392831 cites W2093859880 @default.
- W2588392831 cites W2120688485 @default.
- W2588392831 cites W2125101937 @default.
- W2588392831 cites W2144221002 @default.
- W2588392831 cites W2155113671 @default.
- W2588392831 cites W2155501281 @default.
- W2588392831 cites W2167428023 @default.
- W2588392831 cites W2170938037 @default.
- W2588392831 cites W2172191307 @default.
- W2588392831 cites W2270277444 @default.
- W2588392831 cites W3196751543 @default.
- W2588392831 cites W4211007335 @default.
- W2588392831 cites W4230588984 @default.
- W2588392831 cites W4243282891 @default.
- W2588392831 cites W4245050711 @default.
- W2588392831 cites W4298870207 @default.
- W2588392831 doi "https://doi.org/10.1007/978-3-319-53474-9_2" @default.
- W2588392831 hasPublicationYear "2017" @default.
- W2588392831 type Work @default.
- W2588392831 sameAs 2588392831 @default.
- W2588392831 citedByCount "7" @default.
- W2588392831 countsByYear W25883928312018 @default.
- W2588392831 countsByYear W25883928312019 @default.
- W2588392831 countsByYear W25883928312020 @default.
- W2588392831 crossrefType "book-chapter" @default.
- W2588392831 hasAuthorship W2588392831A5000506074 @default.
- W2588392831 hasAuthorship W2588392831A5015629453 @default.
- W2588392831 hasAuthorship W2588392831A5032429408 @default.
- W2588392831 hasAuthorship W2588392831A5045769686 @default.
- W2588392831 hasConcept C103278499 @default.
- W2588392831 hasConcept C115961682 @default.
- W2588392831 hasConcept C124101348 @default.
- W2588392831 hasConcept C134306372 @default.
- W2588392831 hasConcept C138885662 @default.
- W2588392831 hasConcept C138958017 @default.
- W2588392831 hasConcept C14036430 @default.
- W2588392831 hasConcept C153180895 @default.
- W2588392831 hasConcept C154945302 @default.
- W2588392831 hasConcept C177264268 @default.
- W2588392831 hasConcept C18903297 @default.
- W2588392831 hasConcept C199360897 @default.
- W2588392831 hasConcept C2776401178 @default.
- W2588392831 hasConcept C2777299769 @default.
- W2588392831 hasConcept C33923547 @default.
- W2588392831 hasConcept C34388435 @default.
- W2588392831 hasConcept C41008148 @default.
- W2588392831 hasConcept C41895202 @default.
- W2588392831 hasConcept C42011625 @default.
- W2588392831 hasConcept C5263885 @default.
- W2588392831 hasConcept C58166 @default.
- W2588392831 hasConcept C58489278 @default.
- W2588392831 hasConcept C78458016 @default.
- W2588392831 hasConcept C83665646 @default.
- W2588392831 hasConcept C86803240 @default.
- W2588392831 hasConceptScore W2588392831C103278499 @default.
- W2588392831 hasConceptScore W2588392831C115961682 @default.
- W2588392831 hasConceptScore W2588392831C124101348 @default.
- W2588392831 hasConceptScore W2588392831C134306372 @default.
- W2588392831 hasConceptScore W2588392831C138885662 @default.
- W2588392831 hasConceptScore W2588392831C138958017 @default.
- W2588392831 hasConceptScore W2588392831C14036430 @default.
- W2588392831 hasConceptScore W2588392831C153180895 @default.
- W2588392831 hasConceptScore W2588392831C154945302 @default.
- W2588392831 hasConceptScore W2588392831C177264268 @default.
- W2588392831 hasConceptScore W2588392831C18903297 @default.
- W2588392831 hasConceptScore W2588392831C199360897 @default.
- W2588392831 hasConceptScore W2588392831C2776401178 @default.
- W2588392831 hasConceptScore W2588392831C2777299769 @default.
- W2588392831 hasConceptScore W2588392831C33923547 @default.