Matches in SemOpenAlex for { <https://semopenalex.org/work/W2588403050> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W2588403050 endingPage "128" @default.
- W2588403050 startingPage "119" @default.
- W2588403050 abstract "Recapture image forensics has drawn much attention in public security forensics. Although some algorithms have been proposed to deal with it, there is still great challenge for small-size images. In this paper, we propose a generalized model for small-size recapture image forensics based on Laplacian Convolutional Neural Networks. Different from other Convolutional Neural Networks models, We put signal enhancement layer into Convolutional Neural Networks structure and Laplacian filter is used in the signal enhancement layer. We test the proposed method on four kinds of small-size image databases. The experimental results have demonstrate that the proposed algorithm is effective. The detection accuracies for different image size database are all above 95%." @default.
- W2588403050 created "2017-02-24" @default.
- W2588403050 creator A5007154515 @default.
- W2588403050 creator A5018738371 @default.
- W2588403050 creator A5028127027 @default.
- W2588403050 date "2017-01-01" @default.
- W2588403050 modified "2023-09-23" @default.
- W2588403050 title "Recapture Image Forensics Based on Laplacian Convolutional Neural Networks" @default.
- W2588403050 cites W2002433241 @default.
- W2588403050 cites W2097368385 @default.
- W2588403050 cites W2194775991 @default.
- W2588403050 cites W2407561938 @default.
- W2588403050 cites W2412049401 @default.
- W2588403050 doi "https://doi.org/10.1007/978-3-319-53465-7_9" @default.
- W2588403050 hasPublicationYear "2017" @default.
- W2588403050 type Work @default.
- W2588403050 sameAs 2588403050 @default.
- W2588403050 citedByCount "26" @default.
- W2588403050 countsByYear W25884030502017 @default.
- W2588403050 countsByYear W25884030502018 @default.
- W2588403050 countsByYear W25884030502019 @default.
- W2588403050 countsByYear W25884030502020 @default.
- W2588403050 countsByYear W25884030502021 @default.
- W2588403050 countsByYear W25884030502022 @default.
- W2588403050 countsByYear W25884030502023 @default.
- W2588403050 crossrefType "book-chapter" @default.
- W2588403050 hasAuthorship W2588403050A5007154515 @default.
- W2588403050 hasAuthorship W2588403050A5018738371 @default.
- W2588403050 hasAuthorship W2588403050A5028127027 @default.
- W2588403050 hasConcept C115961682 @default.
- W2588403050 hasConcept C153180895 @default.
- W2588403050 hasConcept C154945302 @default.
- W2588403050 hasConcept C31972630 @default.
- W2588403050 hasConcept C41008148 @default.
- W2588403050 hasConcept C81363708 @default.
- W2588403050 hasConceptScore W2588403050C115961682 @default.
- W2588403050 hasConceptScore W2588403050C153180895 @default.
- W2588403050 hasConceptScore W2588403050C154945302 @default.
- W2588403050 hasConceptScore W2588403050C31972630 @default.
- W2588403050 hasConceptScore W2588403050C41008148 @default.
- W2588403050 hasConceptScore W2588403050C81363708 @default.
- W2588403050 hasLocation W25884030501 @default.
- W2588403050 hasOpenAccess W2588403050 @default.
- W2588403050 hasPrimaryLocation W25884030501 @default.
- W2588403050 hasRelatedWork W2175746458 @default.
- W2588403050 hasRelatedWork W2406522397 @default.
- W2588403050 hasRelatedWork W2613736958 @default.
- W2588403050 hasRelatedWork W2732542196 @default.
- W2588403050 hasRelatedWork W2738221750 @default.
- W2588403050 hasRelatedWork W2760085659 @default.
- W2588403050 hasRelatedWork W2883200793 @default.
- W2588403050 hasRelatedWork W3012978760 @default.
- W2588403050 hasRelatedWork W3093612317 @default.
- W2588403050 hasRelatedWork W4239686595 @default.
- W2588403050 isParatext "false" @default.
- W2588403050 isRetracted "false" @default.
- W2588403050 magId "2588403050" @default.
- W2588403050 workType "book-chapter" @default.