Matches in SemOpenAlex for { <https://semopenalex.org/work/W2588495189> ?p ?o ?g. }
- W2588495189 endingPage "e0171749" @default.
- W2588495189 startingPage "e0171749" @default.
- W2588495189 abstract "Many classification methods have been proposed based on magnetic resonance images. Most methods rely on measures such as volume, the cerebral cortical thickness and grey matter density. These measures are susceptible to the performance of registration and limited in representation of anatomical structure. This paper proposes a two-stage local feature fusion method, in which deformable registration is not desired and anatomical information is represented from moderate scale.Keypoints are firstly extracted from scale-space to represent anatomical structure. Then, two kinds of local features are calculated around the keypoints, one for correspondence and the other for representation. Scores are assigned for keypoints to quantify their effect in classification. The sum of scores for all effective keypoints is used to determine which group the test subject belongs to.We apply this method to magnetic resonance images of Alzheimer's disease and Parkinson's disease. The advantage of local feature in correspondence and representation contributes to the final classification. With the help of local feature (Scale Invariant Feature Transform, SIFT) in correspondence, the performance becomes better. Local feature (Histogram of Oriented Gradient, HOG) extracted from 16×16 cell block obtains better results compared with 4×4 and 8×8 cell block.This paper presents a method which combines the effect of SIFT descriptor in correspondence and the representation ability of HOG descriptor in anatomical structure. This method has the potential in distinguishing patients with brain disease from controls." @default.
- W2588495189 created "2017-02-24" @default.
- W2588495189 creator A5005542093 @default.
- W2588495189 creator A5056208275 @default.
- W2588495189 creator A5060178337 @default.
- W2588495189 creator A5086326013 @default.
- W2588495189 date "2017-02-16" @default.
- W2588495189 modified "2023-10-14" @default.
- W2588495189 title "Classification of brain disease in magnetic resonance images using two-stage local feature fusion" @default.
- W2588495189 cites W1676552347 @default.
- W2588495189 cites W1810343284 @default.
- W2588495189 cites W1937520640 @default.
- W2588495189 cites W1979062697 @default.
- W2588495189 cites W1984185054 @default.
- W2588495189 cites W1986014162 @default.
- W2588495189 cites W1987011701 @default.
- W2588495189 cites W1988494453 @default.
- W2588495189 cites W1992117549 @default.
- W2588495189 cites W1992709597 @default.
- W2588495189 cites W1998064445 @default.
- W2588495189 cites W2000292092 @default.
- W2588495189 cites W2004421347 @default.
- W2588495189 cites W2012670372 @default.
- W2588495189 cites W2014850687 @default.
- W2588495189 cites W2017178110 @default.
- W2588495189 cites W2017237939 @default.
- W2588495189 cites W2022585279 @default.
- W2588495189 cites W2033623176 @default.
- W2588495189 cites W2038899746 @default.
- W2588495189 cites W2039397313 @default.
- W2588495189 cites W2044329307 @default.
- W2588495189 cites W2048251539 @default.
- W2588495189 cites W2053794612 @default.
- W2588495189 cites W2066941820 @default.
- W2588495189 cites W2070210423 @default.
- W2588495189 cites W2071238245 @default.
- W2588495189 cites W2072372801 @default.
- W2588495189 cites W2077924486 @default.
- W2588495189 cites W2091392709 @default.
- W2588495189 cites W2094637188 @default.
- W2588495189 cites W2097440479 @default.
- W2588495189 cites W2098017711 @default.
- W2588495189 cites W2104886804 @default.
- W2588495189 cites W2108333036 @default.
- W2588495189 cites W2112367967 @default.
- W2588495189 cites W2115167851 @default.
- W2588495189 cites W2115449759 @default.
- W2588495189 cites W2119406369 @default.
- W2588495189 cites W2120111102 @default.
- W2588495189 cites W2127384340 @default.
- W2588495189 cites W2128251808 @default.
- W2588495189 cites W2133584444 @default.
- W2588495189 cites W2139317661 @default.
- W2588495189 cites W2143826137 @default.
- W2588495189 cites W2143978324 @default.
- W2588495189 cites W2148080251 @default.
- W2588495189 cites W2148143831 @default.
- W2588495189 cites W2150534249 @default.
- W2588495189 cites W2151103935 @default.
- W2588495189 cites W2153635508 @default.
- W2588495189 cites W2158063156 @default.
- W2588495189 cites W2160955696 @default.
- W2588495189 cites W2163352848 @default.
- W2588495189 cites W2167679119 @default.
- W2588495189 cites W2171380313 @default.
- W2588495189 cites W2171831801 @default.
- W2588495189 cites W2172490184 @default.
- W2588495189 cites W2173116068 @default.
- W2588495189 cites W2222848704 @default.
- W2588495189 cites W2286206973 @default.
- W2588495189 cites W2312610496 @default.
- W2588495189 cites W2340743774 @default.
- W2588495189 cites W2464977649 @default.
- W2588495189 cites W4238843899 @default.
- W2588495189 cites W4248681802 @default.
- W2588495189 cites W54730903 @default.
- W2588495189 doi "https://doi.org/10.1371/journal.pone.0171749" @default.
- W2588495189 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5313178" @default.
- W2588495189 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28207873" @default.
- W2588495189 hasPublicationYear "2017" @default.
- W2588495189 type Work @default.
- W2588495189 sameAs 2588495189 @default.
- W2588495189 citedByCount "12" @default.
- W2588495189 countsByYear W25884951892018 @default.
- W2588495189 countsByYear W25884951892019 @default.
- W2588495189 countsByYear W25884951892020 @default.
- W2588495189 countsByYear W25884951892021 @default.
- W2588495189 countsByYear W25884951892023 @default.
- W2588495189 crossrefType "journal-article" @default.
- W2588495189 hasAuthorship W2588495189A5005542093 @default.
- W2588495189 hasAuthorship W2588495189A5056208275 @default.
- W2588495189 hasAuthorship W2588495189A5060178337 @default.
- W2588495189 hasAuthorship W2588495189A5086326013 @default.
- W2588495189 hasBestOaLocation W25884951891 @default.
- W2588495189 hasConcept C115961682 @default.
- W2588495189 hasConcept C126838900 @default.
- W2588495189 hasConcept C138885662 @default.
- W2588495189 hasConcept C143409427 @default.