Matches in SemOpenAlex for { <https://semopenalex.org/work/W2588668853> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2588668853 abstract "The tensor power of the clique on $t$ vertices (denoted by $K_t^n$) is the graph on vertex set ${1, ..., t}^n$ such that two vertices $x, y in {1, ..., t}^n$ are connected if and only if $x_i neq y_i$ for all $i in {1, ..., n}$. Let the density of a subset $S$ of $K_t^n$ to be $mu(S) := frac{|S|}{t^n}$, and let the vertex boundary of a set $S$ to be vertices which are incident to some vertex of $S$, perhaps including points of $S$. We investigate two similar problems on such graphs. First, we study the vertex isoperimetry problem. Given a density $nu in [0, 1]$ what is the smallest possible density of the vertex boundary of a subset of $K_t^n$ of density $nu$? Let $Phi_t(nu)$ be the infimum of these minimum densities as $n to infty$. We find a recursive relation allows one to compute $Phi_t(nu)$ in time polynomial to the number of desired bits of precision. Second, we study given an independent set $I subseteq K_t^n$ of density $mu(I) = frac{1}{t}(1-epsilon)$, how close it is to a maximum-sized independent set $J$ of density $frac{1}{t}$. We show that this deviation (measured by $mu(I setminus J)$) is at most $4epsilon^{frac{log t}{log t - log(t-1)}}$ as long as $epsilon < 1 - frac{3}{t} + frac{2}{t^2}$. This substantially improves on results of Alon, Dinur, Friedgut, and Sudakov (2004) and Ghandehari and Hatami (2008) which had an $O(epsilon)$ upper bound. We also show the exponent $frac{log t}{log t - log(t-1)}$ is optimal assuming $n$ tending to infinity and $epsilon$ tending to $0$. The methods have similarity to recent work by Ellis, Keller, and Lifshitz (2016) in the context of Kneser graphs and other settings. The author hopes that these results have potential applications in hardness of approximation, particularly in approximate graph coloring and independent set problems." @default.
- W2588668853 created "2017-02-24" @default.
- W2588668853 creator A5028220417 @default.
- W2588668853 date "2017-02-15" @default.
- W2588668853 modified "2023-09-27" @default.
- W2588668853 title "Vertex isoperimetry and independent set stability for tensor powers of cliques" @default.
- W2588668853 cites W1551555658 @default.
- W2588668853 cites W1971361630 @default.
- W2588668853 cites W1978122435 @default.
- W2588668853 cites W1985190262 @default.
- W2588668853 cites W2011301426 @default.
- W2588668853 cites W2053790252 @default.
- W2588668853 cites W2068871408 @default.
- W2588668853 cites W2075646995 @default.
- W2588668853 cites W2130523901 @default.
- W2588668853 cites W2143698439 @default.
- W2588668853 cites W2336459687 @default.
- W2588668853 cites W2529480917 @default.
- W2588668853 cites W2606627981 @default.
- W2588668853 cites W2609098951 @default.
- W2588668853 cites W2757077271 @default.
- W2588668853 cites W2765351033 @default.
- W2588668853 cites W2871506789 @default.
- W2588668853 hasPublicationYear "2017" @default.
- W2588668853 type Work @default.
- W2588668853 sameAs 2588668853 @default.
- W2588668853 citedByCount "1" @default.
- W2588668853 countsByYear W25886688532019 @default.
- W2588668853 crossrefType "posted-content" @default.
- W2588668853 hasAuthorship W2588668853A5028220417 @default.
- W2588668853 hasConcept C114614502 @default.
- W2588668853 hasConcept C121332964 @default.
- W2588668853 hasConcept C132525143 @default.
- W2588668853 hasConcept C33923547 @default.
- W2588668853 hasConcept C80899671 @default.
- W2588668853 hasConcept C95611797 @default.
- W2588668853 hasConceptScore W2588668853C114614502 @default.
- W2588668853 hasConceptScore W2588668853C121332964 @default.
- W2588668853 hasConceptScore W2588668853C132525143 @default.
- W2588668853 hasConceptScore W2588668853C33923547 @default.
- W2588668853 hasConceptScore W2588668853C80899671 @default.
- W2588668853 hasConceptScore W2588668853C95611797 @default.
- W2588668853 hasLocation W25886688531 @default.
- W2588668853 hasOpenAccess W2588668853 @default.
- W2588668853 hasPrimaryLocation W25886688531 @default.
- W2588668853 hasRelatedWork W100082232 @default.
- W2588668853 hasRelatedWork W1574069817 @default.
- W2588668853 hasRelatedWork W2552626183 @default.
- W2588668853 hasRelatedWork W2731076524 @default.
- W2588668853 hasRelatedWork W2737803646 @default.
- W2588668853 hasRelatedWork W2913311252 @default.
- W2588668853 hasRelatedWork W2928878508 @default.
- W2588668853 hasRelatedWork W2949444750 @default.
- W2588668853 hasRelatedWork W2949949472 @default.
- W2588668853 hasRelatedWork W2951995695 @default.
- W2588668853 hasRelatedWork W2952007101 @default.
- W2588668853 hasRelatedWork W2952165733 @default.
- W2588668853 hasRelatedWork W2952340676 @default.
- W2588668853 hasRelatedWork W2953065154 @default.
- W2588668853 hasRelatedWork W2955360385 @default.
- W2588668853 hasRelatedWork W3006070126 @default.
- W2588668853 hasRelatedWork W3101998289 @default.
- W2588668853 hasRelatedWork W3155843169 @default.
- W2588668853 hasRelatedWork W3178525333 @default.
- W2588668853 hasRelatedWork W3202472602 @default.
- W2588668853 isParatext "false" @default.
- W2588668853 isRetracted "false" @default.
- W2588668853 magId "2588668853" @default.
- W2588668853 workType "article" @default.