Matches in SemOpenAlex for { <https://semopenalex.org/work/W2589059474> ?p ?o ?g. }
- W2589059474 endingPage "156" @default.
- W2589059474 startingPage "156" @default.
- W2589059474 abstract "The spread of exotic conifers from commercial plantation forests has significant economic and ecological implications. Accurate methods for invasive conifer detection are required to enable monitoring and guide control. In this research, we combined spectral information from aerial imagery with data from airborne laser scanning (ALS) to develop methods to identify invasive conifers using remotely-sensed data. We examined the effect of ALS pulse density and the height threshold of the training dataset on classification accuracy. The results showed that adding spectral values to the ALS metrics/variables in the training dataset led to significant increases in classification accuracy. The most accurate models (kappa range of 0.773–0.837) had either four or five explanatory variables, including ALS elevation, the near-infrared band and different combinations of ALS intensity and red and green bands. The best models were found to be relatively invariant to changes in pulse density (1–21 pls/m2) or the height threshold (0–2 m) used for the inclusion of data in the training dataset. This research has extended and improved the methods for scattered single tree detection and offered valuable insight into campaign settings for the monitoring of invasive conifers (tree weeds) using remote sensing approaches." @default.
- W2589059474 created "2017-02-24" @default.
- W2589059474 creator A5001588387 @default.
- W2589059474 creator A5063926783 @default.
- W2589059474 creator A5073649293 @default.
- W2589059474 creator A5079458590 @default.
- W2589059474 date "2017-02-15" @default.
- W2589059474 modified "2023-10-06" @default.
- W2589059474 title "Combining Airborne Laser Scanning and Aerial Imagery Enhances Echo Classification for Invasive Conifer Detection" @default.
- W2589059474 cites W1187254890 @default.
- W2589059474 cites W1444913944 @default.
- W2589059474 cites W1788478503 @default.
- W2589059474 cites W1967621805 @default.
- W2589059474 cites W1968696002 @default.
- W2589059474 cites W1976033242 @default.
- W2589059474 cites W1977428739 @default.
- W2589059474 cites W1979773093 @default.
- W2589059474 cites W1982113941 @default.
- W2589059474 cites W1982630251 @default.
- W2589059474 cites W1988054515 @default.
- W2589059474 cites W1988821780 @default.
- W2589059474 cites W1990634901 @default.
- W2589059474 cites W2003451613 @default.
- W2589059474 cites W2006617902 @default.
- W2589059474 cites W2016428929 @default.
- W2589059474 cites W2026952547 @default.
- W2589059474 cites W2039067795 @default.
- W2589059474 cites W2046759104 @default.
- W2589059474 cites W2049832569 @default.
- W2589059474 cites W2053154970 @default.
- W2589059474 cites W2056380340 @default.
- W2589059474 cites W2060983504 @default.
- W2589059474 cites W2068845501 @default.
- W2589059474 cites W2070503188 @default.
- W2589059474 cites W2070608504 @default.
- W2589059474 cites W2080116978 @default.
- W2589059474 cites W2092924074 @default.
- W2589059474 cites W2104582654 @default.
- W2589059474 cites W2105756833 @default.
- W2589059474 cites W2110487469 @default.
- W2589059474 cites W2122755621 @default.
- W2589059474 cites W2125410201 @default.
- W2589059474 cites W2128135560 @default.
- W2589059474 cites W2130045430 @default.
- W2589059474 cites W2139086914 @default.
- W2589059474 cites W2144949021 @default.
- W2589059474 cites W2152016466 @default.
- W2589059474 cites W2161136770 @default.
- W2589059474 cites W2164124513 @default.
- W2589059474 cites W2164777277 @default.
- W2589059474 cites W2169451623 @default.
- W2589059474 cites W2170591795 @default.
- W2589059474 cites W2171979590 @default.
- W2589059474 cites W2310204504 @default.
- W2589059474 cites W2313448762 @default.
- W2589059474 cites W2316799542 @default.
- W2589059474 cites W2344808302 @default.
- W2589059474 cites W2345743725 @default.
- W2589059474 cites W2364050655 @default.
- W2589059474 cites W2465521581 @default.
- W2589059474 cites W2475258442 @default.
- W2589059474 cites W2506333051 @default.
- W2589059474 cites W2911964244 @default.
- W2589059474 doi "https://doi.org/10.3390/rs9020156" @default.
- W2589059474 hasPublicationYear "2017" @default.
- W2589059474 type Work @default.
- W2589059474 sameAs 2589059474 @default.
- W2589059474 citedByCount "14" @default.
- W2589059474 countsByYear W25890594742017 @default.
- W2589059474 countsByYear W25890594742018 @default.
- W2589059474 countsByYear W25890594742019 @default.
- W2589059474 countsByYear W25890594742020 @default.
- W2589059474 countsByYear W25890594742021 @default.
- W2589059474 countsByYear W25890594742022 @default.
- W2589059474 crossrefType "journal-article" @default.
- W2589059474 hasAuthorship W2589059474A5001588387 @default.
- W2589059474 hasAuthorship W2589059474A5063926783 @default.
- W2589059474 hasAuthorship W2589059474A5073649293 @default.
- W2589059474 hasAuthorship W2589059474A5079458590 @default.
- W2589059474 hasBestOaLocation W25890594741 @default.
- W2589059474 hasConcept C120665830 @default.
- W2589059474 hasConcept C121332964 @default.
- W2589059474 hasConcept C141349535 @default.
- W2589059474 hasConcept C205649164 @default.
- W2589059474 hasConcept C39432304 @default.
- W2589059474 hasConcept C41008148 @default.
- W2589059474 hasConcept C520434653 @default.
- W2589059474 hasConcept C62649853 @default.
- W2589059474 hasConceptScore W2589059474C120665830 @default.
- W2589059474 hasConceptScore W2589059474C121332964 @default.
- W2589059474 hasConceptScore W2589059474C141349535 @default.
- W2589059474 hasConceptScore W2589059474C205649164 @default.
- W2589059474 hasConceptScore W2589059474C39432304 @default.
- W2589059474 hasConceptScore W2589059474C41008148 @default.
- W2589059474 hasConceptScore W2589059474C520434653 @default.
- W2589059474 hasConceptScore W2589059474C62649853 @default.
- W2589059474 hasIssue "2" @default.
- W2589059474 hasLocation W25890594741 @default.