Matches in SemOpenAlex for { <https://semopenalex.org/work/W2589073448> ?p ?o ?g. }
- W2589073448 abstract "Accurate estimation of aboveground forest biomass (AGB) and its dynamics is of paramount importance in understanding the role of forest in the carbon cycle and the effective implementation of climate change mitigation policies. LiDAR is currently the most accurate technology for AGB estimation. LiDAR metrics can be derived from the 3D point cloud (echo-based) or from the canopy height model (CHM). Different sensors and survey configurations can affect the metrics derived from the LiDAR data. We evaluate the ability of the metrics derived from the echo-based and CHM data models to estimate AGB in three different biomes, as well as the impact of point density on the metrics derived from them. Our results show that differences among metrics derived at different point densities were significantly different from zero, with a larger impact on CHM-based than echo-based metrics, particularly when the point density was reduced to 1 point m−2. Both data models-echo-based and CHM-performed similarly well in estimating AGB at the three study sites. For the temperate forest in the Sierra Nevada Mountains, California, USA, R2 ranged from 0.79 to 0.8 and RMSE (relRMSE) from 69.69 (35.59%) to 70.71 (36.12%) Mg ha−1 for the echo-based model and from 0.76 to 0.78 and 73.84 (37.72%) to 128.20 (65.49%) Mg ha−1 for the CHM-based model. For the moist tropical forest on Barro Colorado Island, Panama, the models gave R2 ranging between 0.70 and 0.71 and RMSE between 30.08 (12.36%) and 30.32 (12.46) Mg ha−1 [between 0.69–0.70 and 30.42 (12.50%) and 61.30 (25.19%) Mg ha−1] for the echo-based [CHM-based] models. Finally, for the Atlantic forest in the Sierra do Mar, Brazil, R2 was between 0.58–0.69 and RMSE between 37.73 (8.67%) and 39.77 (9.14%) Mg ha−1 for the echo-based model, whereas for the CHM R2 was between 0.37–0.45 and RMSE between 45.43 (10.44%) and 67.23 (15.45%) Mg ha−1. Metrics derived from the CHM show a higher dependence on point density than metrics derived from the echo-based data model. Despite the median of the differences between metrics derived at different point densities differing significantly from zero, the mean change was close to zero and smaller than the standard deviation except for very low point densities (1 point m−2). The application of calibrated models to estimate AGB on metrics derived from thinned datasets resulted in less than 5% error when metrics were derived from the echo-based model. For CHM-based metrics, the same level of error was obtained for point densities higher than 5 points m−2. The fact that reducing point density does not introduce significant errors in AGB estimates is important for biomass monitoring and for an effective implementation of climate change mitigation policies such as REDD + due to its implications for the costs of data acquisition. Both data models showed similar capability to estimate AGB when point density was greater than or equal to 5 point m−2." @default.
- W2589073448 created "2017-02-24" @default.
- W2589073448 creator A5018226678 @default.
- W2589073448 creator A5032994985 @default.
- W2589073448 creator A5033867905 @default.
- W2589073448 creator A5039853039 @default.
- W2589073448 creator A5042922619 @default.
- W2589073448 creator A5044680131 @default.
- W2589073448 creator A5070888429 @default.
- W2589073448 date "2017-02-15" @default.
- W2589073448 modified "2023-10-18" @default.
- W2589073448 title "Impact of data model and point density on aboveground forest biomass estimation from airborne LiDAR" @default.
- W2589073448 cites W1571304235 @default.
- W2589073448 cites W1968601348 @default.
- W2589073448 cites W1973523498 @default.
- W2589073448 cites W1978542468 @default.
- W2589073448 cites W1979581660 @default.
- W2589073448 cites W1982113941 @default.
- W2589073448 cites W1988550253 @default.
- W2589073448 cites W2011435649 @default.
- W2589073448 cites W2032770950 @default.
- W2589073448 cites W2045626198 @default.
- W2589073448 cites W2054058513 @default.
- W2589073448 cites W2060983504 @default.
- W2589073448 cites W2085520997 @default.
- W2589073448 cites W2085741981 @default.
- W2589073448 cites W2085958776 @default.
- W2589073448 cites W2093540905 @default.
- W2589073448 cites W2098747657 @default.
- W2589073448 cites W2100565143 @default.
- W2589073448 cites W2113521108 @default.
- W2589073448 cites W2114228414 @default.
- W2589073448 cites W2115198311 @default.
- W2589073448 cites W2123696190 @default.
- W2589073448 cites W2153601600 @default.
- W2589073448 cites W2170591795 @default.
- W2589073448 cites W2217052705 @default.
- W2589073448 cites W2281655291 @default.
- W2589073448 cites W2466959383 @default.
- W2589073448 cites W2580337091 @default.
- W2589073448 doi "https://doi.org/10.1186/s13021-017-0073-1" @default.
- W2589073448 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5311013" @default.
- W2589073448 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28413848" @default.
- W2589073448 hasPublicationYear "2017" @default.
- W2589073448 type Work @default.
- W2589073448 sameAs 2589073448 @default.
- W2589073448 citedByCount "30" @default.
- W2589073448 countsByYear W25890734482017 @default.
- W2589073448 countsByYear W25890734482018 @default.
- W2589073448 countsByYear W25890734482019 @default.
- W2589073448 countsByYear W25890734482020 @default.
- W2589073448 countsByYear W25890734482021 @default.
- W2589073448 countsByYear W25890734482022 @default.
- W2589073448 countsByYear W25890734482023 @default.
- W2589073448 crossrefType "journal-article" @default.
- W2589073448 hasAuthorship W2589073448A5018226678 @default.
- W2589073448 hasAuthorship W2589073448A5032994985 @default.
- W2589073448 hasAuthorship W2589073448A5033867905 @default.
- W2589073448 hasAuthorship W2589073448A5039853039 @default.
- W2589073448 hasAuthorship W2589073448A5042922619 @default.
- W2589073448 hasAuthorship W2589073448A5044680131 @default.
- W2589073448 hasAuthorship W2589073448A5070888429 @default.
- W2589073448 hasBestOaLocation W25890734481 @default.
- W2589073448 hasConcept C100970517 @default.
- W2589073448 hasConcept C101000010 @default.
- W2589073448 hasConcept C110872660 @default.
- W2589073448 hasConcept C115540264 @default.
- W2589073448 hasConcept C127313418 @default.
- W2589073448 hasConcept C18903297 @default.
- W2589073448 hasConcept C205649164 @default.
- W2589073448 hasConcept C39432304 @default.
- W2589073448 hasConcept C51399673 @default.
- W2589073448 hasConcept C62649853 @default.
- W2589073448 hasConcept C81461190 @default.
- W2589073448 hasConcept C86803240 @default.
- W2589073448 hasConcept C89920630 @default.
- W2589073448 hasConcept C91354502 @default.
- W2589073448 hasConcept C91586092 @default.
- W2589073448 hasConcept C92494378 @default.
- W2589073448 hasConcept C97137747 @default.
- W2589073448 hasConceptScore W2589073448C100970517 @default.
- W2589073448 hasConceptScore W2589073448C101000010 @default.
- W2589073448 hasConceptScore W2589073448C110872660 @default.
- W2589073448 hasConceptScore W2589073448C115540264 @default.
- W2589073448 hasConceptScore W2589073448C127313418 @default.
- W2589073448 hasConceptScore W2589073448C18903297 @default.
- W2589073448 hasConceptScore W2589073448C205649164 @default.
- W2589073448 hasConceptScore W2589073448C39432304 @default.
- W2589073448 hasConceptScore W2589073448C51399673 @default.
- W2589073448 hasConceptScore W2589073448C62649853 @default.
- W2589073448 hasConceptScore W2589073448C81461190 @default.
- W2589073448 hasConceptScore W2589073448C86803240 @default.
- W2589073448 hasConceptScore W2589073448C89920630 @default.
- W2589073448 hasConceptScore W2589073448C91354502 @default.
- W2589073448 hasConceptScore W2589073448C91586092 @default.
- W2589073448 hasConceptScore W2589073448C92494378 @default.
- W2589073448 hasConceptScore W2589073448C97137747 @default.
- W2589073448 hasFunder F4320332478 @default.
- W2589073448 hasFunder F4320334631 @default.
- W2589073448 hasFunder F4320334960 @default.