Matches in SemOpenAlex for { <https://semopenalex.org/work/W2589091941> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2589091941 abstract "The application of surface electromyography (sEMG) technique for muscle fatigue studies is gaining importance in the field of clinical rehabilitation and sports medicine. These sEMG signals are highly nonstationary and exhibit scale-invariant self-similarity structure. The fractal analysis can estimate the scale invariance in the form of fractal dimension (FD) using monofractal (global single FD) or multifractal (local varying FD) algorithms. A comprehensive study of sEMG signal for muscle fatigue using both multifractal and monofractal FD features have not been established in the literature. In this work, an attempt has been made to differentiate sEMG signals recorded nonfatigue and fatigue conditions using monofractal and multifractal algorithms, and machine learning methods. For this purpose, sEMG signals have been recorded from biceps brachii muscles of fifty eight healthy subjects using a standard protocol. The signals of nonfatigue and fatigue region were subjected to eight monofractal (Higuchi, Katz, Petrosian, Sevcik, box counting, multi-resolution length, Hurst and power spectrum density) and two multifractal (detrended fluctuating and detrended moving average) algorithms and 28 FD features were extracted. The features were ranked using conventional and genetic algorithms, and a subset of FD features were further subjected to Naïve Bayes (NB), Logistic Regression (LR) and Multilayer Perceptron (MLP) classifiers. The results show that all fractal features are statistically significant. The classification accuracy using feature subset of conventional method is observed to be from 83% to 88%. The highest accuracy of 93.96% was achieved using genetic algorithm and LR classifier combination. The result demonstrated that the performance of multifractal FD features to be more suitable for sEMG signals as compared to monofractal FD features. The fractal analysis of sEMG signals appears to be a very promising biomarker for muscle fatigue classification and can be extended to detection of fatigue onset in varied neuromuscular conditions." @default.
- W2589091941 created "2017-02-24" @default.
- W2589091941 creator A5013269549 @default.
- W2589091941 creator A5024680899 @default.
- W2589091941 date "2016-10-12" @default.
- W2589091941 modified "2023-09-22" @default.
- W2589091941 title "Classification of Muscular Nonfatigue and Fatigue Conditions Using Surface EMG Signals and Fractal Algorithms" @default.
- W2589091941 doi "https://doi.org/10.1115/dscc2016-9828" @default.
- W2589091941 hasPublicationYear "2016" @default.
- W2589091941 type Work @default.
- W2589091941 sameAs 2589091941 @default.
- W2589091941 citedByCount "1" @default.
- W2589091941 countsByYear W25890919412018 @default.
- W2589091941 crossrefType "proceedings-article" @default.
- W2589091941 hasAuthorship W2589091941A5013269549 @default.
- W2589091941 hasAuthorship W2589091941A5024680899 @default.
- W2589091941 hasConcept C11413529 @default.
- W2589091941 hasConcept C134306372 @default.
- W2589091941 hasConcept C153180895 @default.
- W2589091941 hasConcept C154945302 @default.
- W2589091941 hasConcept C2524010 @default.
- W2589091941 hasConcept C2776799497 @default.
- W2589091941 hasConcept C2908940075 @default.
- W2589091941 hasConcept C33923547 @default.
- W2589091941 hasConcept C40636538 @default.
- W2589091941 hasConcept C41008148 @default.
- W2589091941 hasConcept C71924100 @default.
- W2589091941 hasConcept C99508421 @default.
- W2589091941 hasConceptScore W2589091941C11413529 @default.
- W2589091941 hasConceptScore W2589091941C134306372 @default.
- W2589091941 hasConceptScore W2589091941C153180895 @default.
- W2589091941 hasConceptScore W2589091941C154945302 @default.
- W2589091941 hasConceptScore W2589091941C2524010 @default.
- W2589091941 hasConceptScore W2589091941C2776799497 @default.
- W2589091941 hasConceptScore W2589091941C2908940075 @default.
- W2589091941 hasConceptScore W2589091941C33923547 @default.
- W2589091941 hasConceptScore W2589091941C40636538 @default.
- W2589091941 hasConceptScore W2589091941C41008148 @default.
- W2589091941 hasConceptScore W2589091941C71924100 @default.
- W2589091941 hasConceptScore W2589091941C99508421 @default.
- W2589091941 hasLocation W25890919411 @default.
- W2589091941 hasOpenAccess W2589091941 @default.
- W2589091941 hasPrimaryLocation W25890919411 @default.
- W2589091941 hasRelatedWork W2015759408 @default.
- W2589091941 hasRelatedWork W2037162523 @default.
- W2589091941 hasRelatedWork W2043270014 @default.
- W2589091941 hasRelatedWork W2047277687 @default.
- W2589091941 hasRelatedWork W2060672195 @default.
- W2589091941 hasRelatedWork W2062975441 @default.
- W2589091941 hasRelatedWork W2080670264 @default.
- W2589091941 hasRelatedWork W2087570153 @default.
- W2589091941 hasRelatedWork W2097406060 @default.
- W2589091941 hasRelatedWork W2125875202 @default.
- W2589091941 hasRelatedWork W2243279423 @default.
- W2589091941 hasRelatedWork W2318171354 @default.
- W2589091941 hasRelatedWork W2332391738 @default.
- W2589091941 hasRelatedWork W2383568372 @default.
- W2589091941 hasRelatedWork W2418215666 @default.
- W2589091941 hasRelatedWork W2595927813 @default.
- W2589091941 hasRelatedWork W2774578368 @default.
- W2589091941 hasRelatedWork W3095450573 @default.
- W2589091941 hasRelatedWork W3130422119 @default.
- W2589091941 hasRelatedWork W431097278 @default.
- W2589091941 isParatext "false" @default.
- W2589091941 isRetracted "false" @default.
- W2589091941 magId "2589091941" @default.
- W2589091941 workType "article" @default.