Matches in SemOpenAlex for { <https://semopenalex.org/work/W2589164644> ?p ?o ?g. }
- W2589164644 endingPage "81" @default.
- W2589164644 startingPage "70" @default.
- W2589164644 abstract "The ensemble averaging technique is applied to model mass transport by diffusion in random networks. The system consists of an ensemble of random networks, where each network is made of pockets connected by tortuous channels. Inside a channel, fluid transport is assumed to be governed by the one-dimensional diffusion equation. Mass balance leads to an integro-differential equation for the pocket mass density. The so-called dual-porosity model is found to be equivalent to the leading order approximation of the integration kernel when the diffusion time scale inside the channels is small compared to the macroscopic time scale. As a test problem, we consider the one-dimensional mass diffusion in a semi-infinite domain. Because of the required time to establish the linear concentration profile inside a channel, for early times the similarity variable is xt−1/4 rather than xt−1/2 as in the traditional theory. This early time similarity can be explained by random walk theory through the network." @default.
- W2589164644 created "2017-03-03" @default.
- W2589164644 creator A5026170495 @default.
- W2589164644 creator A5089830058 @default.
- W2589164644 date "2017-06-01" @default.
- W2589164644 modified "2023-10-16" @default.
- W2589164644 title "Diffusion in random networks" @default.
- W2589164644 cites W1574741443 @default.
- W2589164644 cites W1967200406 @default.
- W2589164644 cites W1968401486 @default.
- W2589164644 cites W1973950856 @default.
- W2589164644 cites W1975222998 @default.
- W2589164644 cites W1980752513 @default.
- W2589164644 cites W1982001674 @default.
- W2589164644 cites W1982402391 @default.
- W2589164644 cites W1983038280 @default.
- W2589164644 cites W1988143370 @default.
- W2589164644 cites W1996460793 @default.
- W2589164644 cites W1998684710 @default.
- W2589164644 cites W2000526322 @default.
- W2589164644 cites W2001585646 @default.
- W2589164644 cites W2013812365 @default.
- W2589164644 cites W2016533177 @default.
- W2589164644 cites W2017586731 @default.
- W2589164644 cites W2019702606 @default.
- W2589164644 cites W2022121311 @default.
- W2589164644 cites W2025771233 @default.
- W2589164644 cites W2031342721 @default.
- W2589164644 cites W2031409368 @default.
- W2589164644 cites W2038794466 @default.
- W2589164644 cites W2040505957 @default.
- W2589164644 cites W2043922553 @default.
- W2589164644 cites W2045514685 @default.
- W2589164644 cites W2047598275 @default.
- W2589164644 cites W2048947726 @default.
- W2589164644 cites W2051184636 @default.
- W2589164644 cites W2053126792 @default.
- W2589164644 cites W2055667388 @default.
- W2589164644 cites W2067625176 @default.
- W2589164644 cites W2071593170 @default.
- W2589164644 cites W2074470108 @default.
- W2589164644 cites W2075935605 @default.
- W2589164644 cites W2080930803 @default.
- W2589164644 cites W2089100832 @default.
- W2589164644 cites W2094232093 @default.
- W2589164644 cites W2094840850 @default.
- W2589164644 cites W2095913453 @default.
- W2589164644 cites W2098754325 @default.
- W2589164644 cites W2104995668 @default.
- W2589164644 cites W2111271983 @default.
- W2589164644 cites W2124637492 @default.
- W2589164644 cites W2129489588 @default.
- W2589164644 cites W2162498574 @default.
- W2589164644 cites W2164727176 @default.
- W2589164644 cites W2239291202 @default.
- W2589164644 cites W2298341326 @default.
- W2589164644 cites W2321893600 @default.
- W2589164644 cites W3098162834 @default.
- W2589164644 cites W3100244936 @default.
- W2589164644 cites W3101064457 @default.
- W2589164644 doi "https://doi.org/10.1016/j.ijmultiphaseflow.2017.01.019" @default.
- W2589164644 hasPublicationYear "2017" @default.
- W2589164644 type Work @default.
- W2589164644 sameAs 2589164644 @default.
- W2589164644 citedByCount "3" @default.
- W2589164644 countsByYear W25891646442017 @default.
- W2589164644 countsByYear W25891646442018 @default.
- W2589164644 countsByYear W25891646442023 @default.
- W2589164644 crossrefType "journal-article" @default.
- W2589164644 hasAuthorship W2589164644A5026170495 @default.
- W2589164644 hasAuthorship W2589164644A5089830058 @default.
- W2589164644 hasBestOaLocation W25891646442 @default.
- W2589164644 hasConcept C103278499 @default.
- W2589164644 hasConcept C105795698 @default.
- W2589164644 hasConcept C114614502 @default.
- W2589164644 hasConcept C115961682 @default.
- W2589164644 hasConcept C121194460 @default.
- W2589164644 hasConcept C121332964 @default.
- W2589164644 hasConcept C121864883 @default.
- W2589164644 hasConcept C136264566 @default.
- W2589164644 hasConcept C154945302 @default.
- W2589164644 hasConcept C162324750 @default.
- W2589164644 hasConcept C164602753 @default.
- W2589164644 hasConcept C2777451387 @default.
- W2589164644 hasConcept C2780378061 @default.
- W2589164644 hasConcept C3017618536 @default.
- W2589164644 hasConcept C33923547 @default.
- W2589164644 hasConcept C41008148 @default.
- W2589164644 hasConcept C56739046 @default.
- W2589164644 hasConcept C571446 @default.
- W2589164644 hasConcept C68710425 @default.
- W2589164644 hasConcept C69357855 @default.
- W2589164644 hasConcept C74193536 @default.
- W2589164644 hasConcept C97355855 @default.
- W2589164644 hasConceptScore W2589164644C103278499 @default.
- W2589164644 hasConceptScore W2589164644C105795698 @default.
- W2589164644 hasConceptScore W2589164644C114614502 @default.
- W2589164644 hasConceptScore W2589164644C115961682 @default.