Matches in SemOpenAlex for { <https://semopenalex.org/work/W2589224732> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2589224732 abstract "Multiparticle production mechanism is one of the most phenomena that the high-energy physics concerns. In this work, the evolutionary genetic algorithm (GA) is used to optimize the parameters of the back-propagation neural networks (BPNN). The hybrid evolutionary-neuro model (GA-BPNN) was trained to simulate the rapidity distribution 1/N(dN/dY) of positive and negative pions p-Au, p-Ag and p-Xe for p-Ar, p-Xe interactions at lab momentum Plab =100 GeV/c. Also, for total charged, positive and negative pions for interactions at Plab = 200 GeV/c. Finally, total charged particles for p- Pb collision at center-of-mass energy sqrt(s) = 5.02 TeV are simulated. An efficient ANN network with different connection parameters (weights and biases) have been designed by the GA to calculate and predict the rapidity distribution as a function of the lab momentum Plab, mass number (A) and the number of particles per unit solid angle (Y). Our simulated results have been compared with the experimental data and the matching has been clearly found. It is indicated that the developed GA-BPNN model for rapidity distribution was more successful." @default.
- W2589224732 created "2017-03-03" @default.
- W2589224732 creator A5015496357 @default.
- W2589224732 creator A5031753497 @default.
- W2589224732 creator A5033810689 @default.
- W2589224732 creator A5035122034 @default.
- W2589224732 creator A5063978761 @default.
- W2589224732 date "2016-08-01" @default.
- W2589224732 modified "2023-09-23" @default.
- W2589224732 title "THE APPLICATION OF THE GENETIC ALGORITHM-BACK PROPAGATION NEURAL NETWORK ALGORITHM IN THE HIGH-ENERGY PHYSICS" @default.
- W2589224732 cites W1531900177 @default.
- W2589224732 cites W1569512666 @default.
- W2589224732 cites W1973249544 @default.
- W2589224732 cites W1997291156 @default.
- W2589224732 cites W2016386358 @default.
- W2589224732 cites W2016603866 @default.
- W2589224732 cites W2035784949 @default.
- W2589224732 cites W2045052785 @default.
- W2589224732 cites W2059052912 @default.
- W2589224732 cites W2069821648 @default.
- W2589224732 cites W2075559221 @default.
- W2589224732 cites W2087317345 @default.
- W2589224732 cites W2089493497 @default.
- W2589224732 cites W2090756560 @default.
- W2589224732 cites W2523816235 @default.
- W2589224732 cites W2614831541 @default.
- W2589224732 hasPublicationYear "2016" @default.
- W2589224732 type Work @default.
- W2589224732 sameAs 2589224732 @default.
- W2589224732 citedByCount "0" @default.
- W2589224732 crossrefType "journal-article" @default.
- W2589224732 hasAuthorship W2589224732A5015496357 @default.
- W2589224732 hasAuthorship W2589224732A5031753497 @default.
- W2589224732 hasAuthorship W2589224732A5033810689 @default.
- W2589224732 hasAuthorship W2589224732A5035122034 @default.
- W2589224732 hasAuthorship W2589224732A5063978761 @default.
- W2589224732 hasConcept C11413529 @default.
- W2589224732 hasConcept C119857082 @default.
- W2589224732 hasConcept C121332964 @default.
- W2589224732 hasConcept C154945302 @default.
- W2589224732 hasConcept C186370098 @default.
- W2589224732 hasConcept C41008148 @default.
- W2589224732 hasConcept C50644808 @default.
- W2589224732 hasConcept C62520636 @default.
- W2589224732 hasConcept C8880873 @default.
- W2589224732 hasConceptScore W2589224732C11413529 @default.
- W2589224732 hasConceptScore W2589224732C119857082 @default.
- W2589224732 hasConceptScore W2589224732C121332964 @default.
- W2589224732 hasConceptScore W2589224732C154945302 @default.
- W2589224732 hasConceptScore W2589224732C186370098 @default.
- W2589224732 hasConceptScore W2589224732C41008148 @default.
- W2589224732 hasConceptScore W2589224732C50644808 @default.
- W2589224732 hasConceptScore W2589224732C62520636 @default.
- W2589224732 hasConceptScore W2589224732C8880873 @default.
- W2589224732 hasLocation W25892247321 @default.
- W2589224732 hasOpenAccess W2589224732 @default.
- W2589224732 hasPrimaryLocation W25892247321 @default.
- W2589224732 hasRelatedWork W2354205711 @default.
- W2589224732 hasRelatedWork W2356957943 @default.
- W2589224732 hasRelatedWork W2359549665 @default.
- W2589224732 hasRelatedWork W2362315382 @default.
- W2589224732 hasRelatedWork W2372415543 @default.
- W2589224732 hasRelatedWork W2382761789 @default.
- W2589224732 hasRelatedWork W2386058197 @default.
- W2589224732 hasRelatedWork W2386387936 @default.
- W2589224732 hasRelatedWork W2392110728 @default.
- W2589224732 hasRelatedWork W3195272954 @default.
- W2589224732 isParatext "false" @default.
- W2589224732 isRetracted "false" @default.
- W2589224732 magId "2589224732" @default.
- W2589224732 workType "article" @default.