Matches in SemOpenAlex for { <https://semopenalex.org/work/W2589244411> ?p ?o ?g. }
- W2589244411 abstract "When developing risk models for binary data with small or sparse data sets, the standard maximum likelihood estimation (MLE) based logistic regression faces several problems including biased or infinite estimate of the regression coefficient and frequent convergence failure of the likelihood due to separation. The problem of separation occurs commonly even if sample size is large but there is sufficient number of strong predictors. In the presence of separation, even if one develops the model, it produces overfitted model with poor predictive performance. Firth-and logF-type penalized regression methods are popular alternative to MLE, particularly for solving separation-problem. Despite the attractive advantages, their use in risk prediction is very limited. This paper evaluated these methods in risk prediction in comparison with MLE and other commonly used penalized methods such as ridge. The predictive performance of the methods was evaluated through assessing calibration, discrimination and overall predictive performance using an extensive simulation study. Further an illustration of the methods were provided using a real data example with low prevalence of outcome. The MLE showed poor performance in risk prediction in small or sparse data sets. All penalized methods offered some improvements in calibration, discrimination and overall predictive performance. Although the Firth-and logF-type methods showed almost equal amount of improvement, Firth-type penalization produces some bias in the average predicted probability, and the amount of bias is even larger than that produced by MLE. Of the logF(1,1) and logF(2,2) penalization, logF(2,2) provides slight bias in the estimate of regression coefficient of binary predictor and logF(1,1) performed better in all aspects. Similarly, ridge performed well in discrimination and overall predictive performance but it often produces underfitted model and has high rate of convergence failure (even the rate is higher than that for MLE), probably due to the separation problem. The logF-type penalized method, particularly logF(1,1) could be used in practice when developing risk model for small or sparse data sets." @default.
- W2589244411 created "2017-03-03" @default.
- W2589244411 creator A5000540113 @default.
- W2589244411 creator A5056566876 @default.
- W2589244411 date "2017-02-23" @default.
- W2589244411 modified "2023-10-12" @default.
- W2589244411 title "Performance of Firth-and logF-type penalized methods in risk prediction for small or sparse binary data" @default.
- W2589244411 cites W1523842520 @default.
- W2589244411 cites W1911333099 @default.
- W2589244411 cites W1965885948 @default.
- W2589244411 cites W1970502168 @default.
- W2589244411 cites W1994224528 @default.
- W2589244411 cites W1998392635 @default.
- W2589244411 cites W2005404141 @default.
- W2589244411 cites W2013416277 @default.
- W2589244411 cites W2017441956 @default.
- W2589244411 cites W2020925091 @default.
- W2589244411 cites W2029722537 @default.
- W2589244411 cites W2031821463 @default.
- W2589244411 cites W2037668591 @default.
- W2589244411 cites W2049123275 @default.
- W2589244411 cites W2051411536 @default.
- W2589244411 cites W2075490785 @default.
- W2589244411 cites W2078129874 @default.
- W2589244411 cites W2089554948 @default.
- W2589244411 cites W2109325327 @default.
- W2589244411 cites W2119910794 @default.
- W2589244411 cites W2122825543 @default.
- W2589244411 cites W2122892545 @default.
- W2589244411 cites W2126436234 @default.
- W2589244411 cites W2136133675 @default.
- W2589244411 cites W2138199749 @default.
- W2589244411 cites W2143313161 @default.
- W2589244411 cites W2152330909 @default.
- W2589244411 cites W2156644139 @default.
- W2589244411 cites W2343557095 @default.
- W2589244411 cites W2402455041 @default.
- W2589244411 cites W4236216948 @default.
- W2589244411 cites W4244767189 @default.
- W2589244411 doi "https://doi.org/10.1186/s12874-017-0313-9" @default.
- W2589244411 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5324225" @default.
- W2589244411 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28231767" @default.
- W2589244411 hasPublicationYear "2017" @default.
- W2589244411 type Work @default.
- W2589244411 sameAs 2589244411 @default.
- W2589244411 citedByCount "44" @default.
- W2589244411 countsByYear W25892444112017 @default.
- W2589244411 countsByYear W25892444112018 @default.
- W2589244411 countsByYear W25892444112019 @default.
- W2589244411 countsByYear W25892444112020 @default.
- W2589244411 countsByYear W25892444112021 @default.
- W2589244411 countsByYear W25892444112022 @default.
- W2589244411 countsByYear W25892444112023 @default.
- W2589244411 crossrefType "journal-article" @default.
- W2589244411 hasAuthorship W2589244411A5000540113 @default.
- W2589244411 hasAuthorship W2589244411A5056566876 @default.
- W2589244411 hasBestOaLocation W25892444111 @default.
- W2589244411 hasConcept C105795698 @default.
- W2589244411 hasConcept C111368507 @default.
- W2589244411 hasConcept C127313418 @default.
- W2589244411 hasConcept C129848803 @default.
- W2589244411 hasConcept C149782125 @default.
- W2589244411 hasConcept C151956035 @default.
- W2589244411 hasConcept C165838908 @default.
- W2589244411 hasConcept C2778371416 @default.
- W2589244411 hasConcept C2779190172 @default.
- W2589244411 hasConcept C33923547 @default.
- W2589244411 hasConcept C41008148 @default.
- W2589244411 hasConcept C48372109 @default.
- W2589244411 hasConcept C83546350 @default.
- W2589244411 hasConcept C94375191 @default.
- W2589244411 hasConceptScore W2589244411C105795698 @default.
- W2589244411 hasConceptScore W2589244411C111368507 @default.
- W2589244411 hasConceptScore W2589244411C127313418 @default.
- W2589244411 hasConceptScore W2589244411C129848803 @default.
- W2589244411 hasConceptScore W2589244411C149782125 @default.
- W2589244411 hasConceptScore W2589244411C151956035 @default.
- W2589244411 hasConceptScore W2589244411C165838908 @default.
- W2589244411 hasConceptScore W2589244411C2778371416 @default.
- W2589244411 hasConceptScore W2589244411C2779190172 @default.
- W2589244411 hasConceptScore W2589244411C33923547 @default.
- W2589244411 hasConceptScore W2589244411C41008148 @default.
- W2589244411 hasConceptScore W2589244411C48372109 @default.
- W2589244411 hasConceptScore W2589244411C83546350 @default.
- W2589244411 hasConceptScore W2589244411C94375191 @default.
- W2589244411 hasIssue "1" @default.
- W2589244411 hasLocation W25892444111 @default.
- W2589244411 hasLocation W25892444112 @default.
- W2589244411 hasLocation W25892444113 @default.
- W2589244411 hasLocation W25892444114 @default.
- W2589244411 hasLocation W25892444115 @default.
- W2589244411 hasOpenAccess W2589244411 @default.
- W2589244411 hasPrimaryLocation W25892444111 @default.
- W2589244411 hasRelatedWork W1980535114 @default.
- W2589244411 hasRelatedWork W2018164323 @default.
- W2589244411 hasRelatedWork W2018596126 @default.
- W2589244411 hasRelatedWork W2063706985 @default.
- W2589244411 hasRelatedWork W2083580028 @default.
- W2589244411 hasRelatedWork W2083885402 @default.
- W2589244411 hasRelatedWork W2094988397 @default.