Matches in SemOpenAlex for { <https://semopenalex.org/work/W2589381243> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2589381243 endingPage "50" @default.
- W2589381243 startingPage "40" @default.
- W2589381243 abstract "In the field of text mining, topic modeling and detection are fundamental problems in public opinion monitoring, information retrieval, social media analysis, and other activities. Document clustering has been used for topic detection at the document level. Probabilistic topic models treat topics as a distribution over the term space, but this approach overlooks the semantic information hidden in the topic. Thus, representing topics without loss of semantic information as well as detecting the optimal topic is a challenging task. In this study, we built topics using a network called a topic graph, where the topics were represented as concept nodes and their semantic relationships using WordNet. Next, we extracted each topic from the topic graph to obtain a corpus by community discovery. In order to find the optimal topic to describe the related corpus, we defined a topic pruning process, which was used for topic detection. We then performed topic pruning using Markov decision processes, which transformed topic detection into a dynamic programming problem. Experimental results produced using a newsgroup corpus and a science literature corpus showed that our method obtained almost the same precision and recall as baseline models such as latent Dirichlet allocation and KeyGraph. In addition, our method performed better than the probabilistic topic model in terms of its explanatory power and the runtime was lower compared with all three baseline methods, while it can also be optimized to adapt the corpus better by using topic pruning." @default.
- W2589381243 created "2017-03-03" @default.
- W2589381243 creator A5016055499 @default.
- W2589381243 creator A5054870547 @default.
- W2589381243 creator A5067505422 @default.
- W2589381243 date "2017-06-01" @default.
- W2589381243 modified "2023-10-17" @default.
- W2589381243 title "Semantic-based topic detection using Markov decision processes" @default.
- W2589381243 cites W1989894105 @default.
- W2589381243 cites W2017291483 @default.
- W2589381243 cites W2102381086 @default.
- W2589381243 cites W2125050594 @default.
- W2589381243 cites W2131681506 @default.
- W2589381243 cites W2132075088 @default.
- W2589381243 cites W3099640513 @default.
- W2589381243 cites W4211099384 @default.
- W2589381243 doi "https://doi.org/10.1016/j.neucom.2017.02.020" @default.
- W2589381243 hasPublicationYear "2017" @default.
- W2589381243 type Work @default.
- W2589381243 sameAs 2589381243 @default.
- W2589381243 citedByCount "17" @default.
- W2589381243 countsByYear W25893812432018 @default.
- W2589381243 countsByYear W25893812432019 @default.
- W2589381243 countsByYear W25893812432020 @default.
- W2589381243 countsByYear W25893812432021 @default.
- W2589381243 countsByYear W25893812432022 @default.
- W2589381243 crossrefType "journal-article" @default.
- W2589381243 hasAuthorship W2589381243A5016055499 @default.
- W2589381243 hasAuthorship W2589381243A5054870547 @default.
- W2589381243 hasAuthorship W2589381243A5067505422 @default.
- W2589381243 hasConcept C105795698 @default.
- W2589381243 hasConcept C106189395 @default.
- W2589381243 hasConcept C119857082 @default.
- W2589381243 hasConcept C153180895 @default.
- W2589381243 hasConcept C154945302 @default.
- W2589381243 hasConcept C159886148 @default.
- W2589381243 hasConcept C204321447 @default.
- W2589381243 hasConcept C33923547 @default.
- W2589381243 hasConcept C41008148 @default.
- W2589381243 hasConceptScore W2589381243C105795698 @default.
- W2589381243 hasConceptScore W2589381243C106189395 @default.
- W2589381243 hasConceptScore W2589381243C119857082 @default.
- W2589381243 hasConceptScore W2589381243C153180895 @default.
- W2589381243 hasConceptScore W2589381243C154945302 @default.
- W2589381243 hasConceptScore W2589381243C159886148 @default.
- W2589381243 hasConceptScore W2589381243C204321447 @default.
- W2589381243 hasConceptScore W2589381243C33923547 @default.
- W2589381243 hasConceptScore W2589381243C41008148 @default.
- W2589381243 hasFunder F4320321001 @default.
- W2589381243 hasFunder F4320321885 @default.
- W2589381243 hasFunder F4320322666 @default.
- W2589381243 hasLocation W25893812431 @default.
- W2589381243 hasOpenAccess W2589381243 @default.
- W2589381243 hasPrimaryLocation W25893812431 @default.
- W2589381243 hasRelatedWork W2151447942 @default.
- W2589381243 hasRelatedWork W2368651715 @default.
- W2589381243 hasRelatedWork W2611614995 @default.
- W2589381243 hasRelatedWork W2961085424 @default.
- W2589381243 hasRelatedWork W3046775127 @default.
- W2589381243 hasRelatedWork W4205958290 @default.
- W2589381243 hasRelatedWork W4286629047 @default.
- W2589381243 hasRelatedWork W4306321456 @default.
- W2589381243 hasRelatedWork W4306674287 @default.
- W2589381243 hasRelatedWork W4224009465 @default.
- W2589381243 hasVolume "242" @default.
- W2589381243 isParatext "false" @default.
- W2589381243 isRetracted "false" @default.
- W2589381243 magId "2589381243" @default.
- W2589381243 workType "article" @default.