Matches in SemOpenAlex for { <https://semopenalex.org/work/W2589390234> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2589390234 abstract "The aim of this study was to propose a method to predict the minimum achievable mean lung dose (MLD) and corresponding dosimetric parameters for organs-at-risk (OAR) based on individual patient anatomy. For each patient, the dose for 36 equidistant individual multileaf collimator shaped fields in the treatment planning system (TPS) was calculated. Based on these dose matrices, the MLD for each patient was predicted by the homemade DosePredictor software in which the solution of linear equations was implemented. The software prediction results were validated based on 3D conformal radiotherapy (3D-CRT) and volumetric modulated arc therapy (VMAT) plans previously prepared for 16 patients with stage III non-small-cell lung cancer (NSCLC). For each patient, dosimetric parameters derived from plans and the results calculated by DosePredictor were compared. The MLD, the maximum dose to the spinal cord (Dmax cord) and the mean esophageal dose (MED) were analyzed. There was a strong correlation between the MLD calculated by the DosePredictor and those obtained in treatment plans regardless of the technique used. The correlation coefficient was 0.96 for both 3D-CRT and VMAT techniques. In a similar manner, MED correlations of 0.98 and 0.96 were obtained for 3D-CRT and VMAT plans, respectively. The maximum dose to the spinal cord was not predicted very well. The correlation coefficient was 0.30 and 0.61 for 3D-CRT and VMAT, respectively. The presented method allows us to predict the minimum MLD and corresponding dosimetric parameters to OARs without the necessity of plan preparation. The method can serve as a guide during the treatment planning process, for example, as initial constraints in VMAT optimization. It allows the probability of lung pneumonitis to be predicted." @default.
- W2589390234 created "2017-03-03" @default.
- W2589390234 creator A5010751837 @default.
- W2589390234 creator A5026858824 @default.
- W2589390234 creator A5035929029 @default.
- W2589390234 creator A5082395674 @default.
- W2589390234 date "2017-01-01" @default.
- W2589390234 modified "2023-10-18" @default.
- W2589390234 title "Method of predicting the mean lung dose based on a patient׳s anatomy and dose-volume histograms" @default.
- W2589390234 cites W1966867308 @default.
- W2589390234 cites W1983372287 @default.
- W2589390234 cites W1987419782 @default.
- W2589390234 cites W2002571443 @default.
- W2589390234 cites W2017857032 @default.
- W2589390234 cites W2021131581 @default.
- W2589390234 cites W2035629892 @default.
- W2589390234 cites W2037171241 @default.
- W2589390234 cites W2037794736 @default.
- W2589390234 cites W2042205682 @default.
- W2589390234 cites W2045073901 @default.
- W2589390234 cites W2047037517 @default.
- W2589390234 cites W2059589551 @default.
- W2589390234 cites W2076078069 @default.
- W2589390234 cites W2131034218 @default.
- W2589390234 cites W2137814074 @default.
- W2589390234 cites W2151071551 @default.
- W2589390234 cites W2159751006 @default.
- W2589390234 doi "https://doi.org/10.1016/j.meddos.2016.12.001" @default.
- W2589390234 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28237293" @default.
- W2589390234 hasPublicationYear "2017" @default.
- W2589390234 type Work @default.
- W2589390234 sameAs 2589390234 @default.
- W2589390234 citedByCount "8" @default.
- W2589390234 countsByYear W25893902342018 @default.
- W2589390234 countsByYear W25893902342019 @default.
- W2589390234 countsByYear W25893902342020 @default.
- W2589390234 countsByYear W25893902342021 @default.
- W2589390234 crossrefType "journal-article" @default.
- W2589390234 hasAuthorship W2589390234A5010751837 @default.
- W2589390234 hasAuthorship W2589390234A5026858824 @default.
- W2589390234 hasAuthorship W2589390234A5035929029 @default.
- W2589390234 hasAuthorship W2589390234A5082395674 @default.
- W2589390234 hasConcept C105795698 @default.
- W2589390234 hasConcept C118552586 @default.
- W2589390234 hasConcept C126322002 @default.
- W2589390234 hasConcept C126838900 @default.
- W2589390234 hasConcept C161471255 @default.
- W2589390234 hasConcept C178910020 @default.
- W2589390234 hasConcept C201645570 @default.
- W2589390234 hasConcept C27101514 @default.
- W2589390234 hasConcept C2777714996 @default.
- W2589390234 hasConcept C2780092901 @default.
- W2589390234 hasConcept C2780775167 @default.
- W2589390234 hasConcept C2989005 @default.
- W2589390234 hasConcept C33923547 @default.
- W2589390234 hasConcept C509974204 @default.
- W2589390234 hasConcept C71924100 @default.
- W2589390234 hasConcept C75088862 @default.
- W2589390234 hasConceptScore W2589390234C105795698 @default.
- W2589390234 hasConceptScore W2589390234C118552586 @default.
- W2589390234 hasConceptScore W2589390234C126322002 @default.
- W2589390234 hasConceptScore W2589390234C126838900 @default.
- W2589390234 hasConceptScore W2589390234C161471255 @default.
- W2589390234 hasConceptScore W2589390234C178910020 @default.
- W2589390234 hasConceptScore W2589390234C201645570 @default.
- W2589390234 hasConceptScore W2589390234C27101514 @default.
- W2589390234 hasConceptScore W2589390234C2777714996 @default.
- W2589390234 hasConceptScore W2589390234C2780092901 @default.
- W2589390234 hasConceptScore W2589390234C2780775167 @default.
- W2589390234 hasConceptScore W2589390234C2989005 @default.
- W2589390234 hasConceptScore W2589390234C33923547 @default.
- W2589390234 hasConceptScore W2589390234C509974204 @default.
- W2589390234 hasConceptScore W2589390234C71924100 @default.
- W2589390234 hasConceptScore W2589390234C75088862 @default.
- W2589390234 hasLocation W25893902341 @default.
- W2589390234 hasLocation W25893902342 @default.
- W2589390234 hasOpenAccess W2589390234 @default.
- W2589390234 hasPrimaryLocation W25893902341 @default.
- W2589390234 hasRelatedWork W1589084818 @default.
- W2589390234 hasRelatedWork W1971534613 @default.
- W2589390234 hasRelatedWork W1977472174 @default.
- W2589390234 hasRelatedWork W1985069801 @default.
- W2589390234 hasRelatedWork W1995822876 @default.
- W2589390234 hasRelatedWork W2052307561 @default.
- W2589390234 hasRelatedWork W2077961404 @default.
- W2589390234 hasRelatedWork W2409321793 @default.
- W2589390234 hasRelatedWork W2555130632 @default.
- W2589390234 hasRelatedWork W957382563 @default.
- W2589390234 isParatext "false" @default.
- W2589390234 isRetracted "false" @default.
- W2589390234 magId "2589390234" @default.
- W2589390234 workType "article" @default.