Matches in SemOpenAlex for { <https://semopenalex.org/work/W2589632792> ?p ?o ?g. }
- W2589632792 endingPage "e1005390" @default.
- W2589632792 startingPage "e1005390" @default.
- W2589632792 abstract "Point process generalized linear models (PP-GLMs) provide an important statistical framework for modeling spiking activity in single-neurons and neuronal networks. Stochastic stability is essential when sampling from these models, as done in computational neuroscience to analyze statistical properties of neuronal dynamics and in neuro-engineering to implement closed-loop applications. Here we show, however, that despite passing common goodness-of-fit tests, PP-GLMs estimated from data are often unstable, leading to divergent firing rates. The inclusion of absolute refractory periods is not a satisfactory solution since the activity then typically settles into unphysiological rates. To address these issues, we derive a framework for determining the existence and stability of fixed points of the expected conditional intensity function (CIF) for general PP-GLMs. Specifically, in nonlinear Hawkes PP-GLMs, the CIF is expressed as a function of the previous spike history and exogenous inputs. We use a mean-field quasi-renewal (QR) approximation that decomposes spike history effects into the contribution of the last spike and an average of the CIF over all spike histories prior to the last spike. Fixed points for stationary rates are derived as self-consistent solutions of integral equations. Bifurcation analysis and the number of fixed points predict that the original models can show stable, divergent, and metastable (fragile) dynamics. For fragile models, fluctuations of the single-neuron dynamics predict expected divergence times after which rates approach unphysiologically high values. This metric can be used to estimate the probability of rates to remain physiological for given time periods, e.g., for simulation purposes. We demonstrate the use of the stability framework using simulated single-neuron examples and neurophysiological recordings. Finally, we show how to adapt PP-GLM estimation procedures to guarantee model stability. Overall, our results provide a stability framework for data-driven PP-GLMs and shed new light on the stochastic dynamics of state-of-the-art statistical models of neuronal spiking activity." @default.
- W2589632792 created "2017-03-03" @default.
- W2589632792 creator A5018336412 @default.
- W2589632792 creator A5029223723 @default.
- W2589632792 creator A5082964970 @default.
- W2589632792 date "2017-02-24" @default.
- W2589632792 modified "2023-10-06" @default.
- W2589632792 title "On the stability and dynamics of stochastic spiking neuron models: Nonlinear Hawkes process and point process GLMs" @default.
- W2589632792 cites W1496923692 @default.
- W2589632792 cites W1539015357 @default.
- W2589632792 cites W1961105456 @default.
- W2589632792 cites W1972768882 @default.
- W2589632792 cites W1988384534 @default.
- W2589632792 cites W1991266025 @default.
- W2589632792 cites W1994065914 @default.
- W2589632792 cites W2014059618 @default.
- W2589632792 cites W2015505597 @default.
- W2589632792 cites W2026784295 @default.
- W2589632792 cites W2034247509 @default.
- W2589632792 cites W2037567991 @default.
- W2589632792 cites W2059668389 @default.
- W2589632792 cites W2065115977 @default.
- W2589632792 cites W2069519142 @default.
- W2589632792 cites W2069849731 @default.
- W2589632792 cites W2070297944 @default.
- W2589632792 cites W2072264193 @default.
- W2589632792 cites W2076554698 @default.
- W2589632792 cites W2083137386 @default.
- W2589632792 cites W2087861759 @default.
- W2589632792 cites W2094275057 @default.
- W2589632792 cites W2099496298 @default.
- W2589632792 cites W2104755093 @default.
- W2589632792 cites W2109234859 @default.
- W2589632792 cites W2109843705 @default.
- W2589632792 cites W2110242299 @default.
- W2589632792 cites W2129983824 @default.
- W2589632792 cites W2132047598 @default.
- W2589632792 cites W2139755184 @default.
- W2589632792 cites W2142329149 @default.
- W2589632792 cites W2150474797 @default.
- W2589632792 cites W2150908477 @default.
- W2589632792 cites W2168228198 @default.
- W2589632792 cites W2290226932 @default.
- W2589632792 cites W2395680518 @default.
- W2589632792 cites W2547783202 @default.
- W2589632792 cites W2963396462 @default.
- W2589632792 cites W3100738684 @default.
- W2589632792 cites W3121515295 @default.
- W2589632792 cites W4231081240 @default.
- W2589632792 cites W4246782022 @default.
- W2589632792 cites W2100777686 @default.
- W2589632792 doi "https://doi.org/10.1371/journal.pcbi.1005390" @default.
- W2589632792 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5325182" @default.
- W2589632792 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28234899" @default.
- W2589632792 hasPublicationYear "2017" @default.
- W2589632792 type Work @default.
- W2589632792 sameAs 2589632792 @default.
- W2589632792 citedByCount "64" @default.
- W2589632792 countsByYear W25896327922016 @default.
- W2589632792 countsByYear W25896327922017 @default.
- W2589632792 countsByYear W25896327922018 @default.
- W2589632792 countsByYear W25896327922019 @default.
- W2589632792 countsByYear W25896327922020 @default.
- W2589632792 countsByYear W25896327922021 @default.
- W2589632792 countsByYear W25896327922022 @default.
- W2589632792 countsByYear W25896327922023 @default.
- W2589632792 crossrefType "journal-article" @default.
- W2589632792 hasAuthorship W2589632792A5018336412 @default.
- W2589632792 hasAuthorship W2589632792A5029223723 @default.
- W2589632792 hasAuthorship W2589632792A5082964970 @default.
- W2589632792 hasBestOaLocation W25896327921 @default.
- W2589632792 hasConcept C105795698 @default.
- W2589632792 hasConcept C112972136 @default.
- W2589632792 hasConcept C119857082 @default.
- W2589632792 hasConcept C121332964 @default.
- W2589632792 hasConcept C121864883 @default.
- W2589632792 hasConcept C158622935 @default.
- W2589632792 hasConcept C28826006 @default.
- W2589632792 hasConcept C33923547 @default.
- W2589632792 hasConcept C41008148 @default.
- W2589632792 hasConcept C62520636 @default.
- W2589632792 hasConcept C88871306 @default.
- W2589632792 hasConceptScore W2589632792C105795698 @default.
- W2589632792 hasConceptScore W2589632792C112972136 @default.
- W2589632792 hasConceptScore W2589632792C119857082 @default.
- W2589632792 hasConceptScore W2589632792C121332964 @default.
- W2589632792 hasConceptScore W2589632792C121864883 @default.
- W2589632792 hasConceptScore W2589632792C158622935 @default.
- W2589632792 hasConceptScore W2589632792C28826006 @default.
- W2589632792 hasConceptScore W2589632792C33923547 @default.
- W2589632792 hasConceptScore W2589632792C41008148 @default.
- W2589632792 hasConceptScore W2589632792C62520636 @default.
- W2589632792 hasConceptScore W2589632792C88871306 @default.
- W2589632792 hasFunder F4320306127 @default.
- W2589632792 hasFunder F4320309070 @default.
- W2589632792 hasFunder F4320320924 @default.
- W2589632792 hasFunder F4320337359 @default.
- W2589632792 hasIssue "2" @default.