Matches in SemOpenAlex for { <https://semopenalex.org/work/W2589653604> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2589653604 abstract "Given an ideal $mathfrak{a}$ in $A[x_1, ldots, x_n]$, where $A$ is a Noetherian integral domain, we propose an approach to compute the Krull dimension of $A[x_1,ldots,x_n]/mathfrak{a}$, when the residue class polynomial ring is a free $A$-module. When $A$ is a field, the Krull dimension of $A[x_1,ldots,x_n]/mathfrak{a}$ has several equivalent algorithmic definitions by which it can be computed. But this is not true in the case of arbitrary Noetherian rings. For a Noetherian integral domain, $A$ we introduce the notion of combinatorial dimension of $A[x_1, ldots,x_n]/mathfrak{a}$ and give a Grobner basis method to compute it for residue class polynomial rings that have a free $A$-module representation w.r.t. a lexicographic ordering. For such $A$-algebras, we derive a relation between Krull dimension and combinatorial dimension of $A[x_1, ldots, x_n]/mathfrak{a}$. An immediate application of this relation is that it gives a uniform method, the first of its kind, to compute the dimension of $A[x_1, ldots, x_n]/mathfrak{a}$ without having to consider individual properties of the ideal. For $A$-algebras that have a free $A$-module representation w.r.t. degree compatible monomial orderings, we introduce the concepts of Hilbert function, Hilbert series and Hilbert polynomials and show that Grobner basis methods can be used to compute these quantities. We then proceed to show that the combinatorial dimension of such $A$-algebras is equal to the degree of the Hilbert polynomial. This enables us to extend the relation between Krull dimension and combinatorial dimension to $A$-algebras with a free $A$-module representation w.r.t. a degree compatible ordering as well." @default.
- W2589653604 created "2017-03-03" @default.
- W2589653604 creator A5010292297 @default.
- W2589653604 creator A5041176859 @default.
- W2589653604 date "2016-02-13" @default.
- W2589653604 modified "2023-09-27" @default.
- W2589653604 title "On Grobner Bases and Krull Dimension of Residue Class Rings of Polynomial Rings over Integral Domains using Grobner Bases" @default.
- W2589653604 hasPublicationYear "2016" @default.
- W2589653604 type Work @default.
- W2589653604 sameAs 2589653604 @default.
- W2589653604 citedByCount "0" @default.
- W2589653604 crossrefType "posted-content" @default.
- W2589653604 hasAuthorship W2589653604A5010292297 @default.
- W2589653604 hasAuthorship W2589653604A5041176859 @default.
- W2589653604 hasConcept C111472728 @default.
- W2589653604 hasConcept C114614502 @default.
- W2589653604 hasConcept C118615104 @default.
- W2589653604 hasConcept C134306372 @default.
- W2589653604 hasConcept C136119220 @default.
- W2589653604 hasConcept C138885662 @default.
- W2589653604 hasConcept C162860070 @default.
- W2589653604 hasConcept C198082693 @default.
- W2589653604 hasConcept C202444582 @default.
- W2589653604 hasConcept C22602557 @default.
- W2589653604 hasConcept C2776639384 @default.
- W2589653604 hasConcept C2777726979 @default.
- W2589653604 hasConcept C2779057376 @default.
- W2589653604 hasConcept C2781025942 @default.
- W2589653604 hasConcept C33676613 @default.
- W2589653604 hasConcept C33923547 @default.
- W2589653604 hasConcept C46333567 @default.
- W2589653604 hasConcept C57033185 @default.
- W2589653604 hasConcept C62799726 @default.
- W2589653604 hasConcept C78313660 @default.
- W2589653604 hasConcept C90119067 @default.
- W2589653604 hasConcept C9485509 @default.
- W2589653604 hasConcept C96489954 @default.
- W2589653604 hasConcept C9652623 @default.
- W2589653604 hasConcept C98486379 @default.
- W2589653604 hasConceptScore W2589653604C111472728 @default.
- W2589653604 hasConceptScore W2589653604C114614502 @default.
- W2589653604 hasConceptScore W2589653604C118615104 @default.
- W2589653604 hasConceptScore W2589653604C134306372 @default.
- W2589653604 hasConceptScore W2589653604C136119220 @default.
- W2589653604 hasConceptScore W2589653604C138885662 @default.
- W2589653604 hasConceptScore W2589653604C162860070 @default.
- W2589653604 hasConceptScore W2589653604C198082693 @default.
- W2589653604 hasConceptScore W2589653604C202444582 @default.
- W2589653604 hasConceptScore W2589653604C22602557 @default.
- W2589653604 hasConceptScore W2589653604C2776639384 @default.
- W2589653604 hasConceptScore W2589653604C2777726979 @default.
- W2589653604 hasConceptScore W2589653604C2779057376 @default.
- W2589653604 hasConceptScore W2589653604C2781025942 @default.
- W2589653604 hasConceptScore W2589653604C33676613 @default.
- W2589653604 hasConceptScore W2589653604C33923547 @default.
- W2589653604 hasConceptScore W2589653604C46333567 @default.
- W2589653604 hasConceptScore W2589653604C57033185 @default.
- W2589653604 hasConceptScore W2589653604C62799726 @default.
- W2589653604 hasConceptScore W2589653604C78313660 @default.
- W2589653604 hasConceptScore W2589653604C90119067 @default.
- W2589653604 hasConceptScore W2589653604C9485509 @default.
- W2589653604 hasConceptScore W2589653604C96489954 @default.
- W2589653604 hasConceptScore W2589653604C9652623 @default.
- W2589653604 hasConceptScore W2589653604C98486379 @default.
- W2589653604 hasLocation W25896536041 @default.
- W2589653604 hasOpenAccess W2589653604 @default.
- W2589653604 hasPrimaryLocation W25896536041 @default.
- W2589653604 hasRelatedWork W1489090944 @default.
- W2589653604 hasRelatedWork W1568625975 @default.
- W2589653604 hasRelatedWork W1975761344 @default.
- W2589653604 hasRelatedWork W1988750694 @default.
- W2589653604 hasRelatedWork W2018972757 @default.
- W2589653604 hasRelatedWork W2045324703 @default.
- W2589653604 hasRelatedWork W2055323082 @default.
- W2589653604 hasRelatedWork W2089328508 @default.
- W2589653604 hasRelatedWork W2094976779 @default.
- W2589653604 hasRelatedWork W2178045780 @default.
- W2589653604 hasRelatedWork W2287195337 @default.
- W2589653604 hasRelatedWork W2484399375 @default.
- W2589653604 hasRelatedWork W2797973434 @default.
- W2589653604 hasRelatedWork W2951430850 @default.
- W2589653604 hasRelatedWork W2952073863 @default.
- W2589653604 hasRelatedWork W2952783458 @default.
- W2589653604 hasRelatedWork W3042004131 @default.
- W2589653604 hasRelatedWork W3110090969 @default.
- W2589653604 hasRelatedWork W84772786 @default.
- W2589653604 hasRelatedWork W2740064788 @default.
- W2589653604 isParatext "false" @default.
- W2589653604 isRetracted "false" @default.
- W2589653604 magId "2589653604" @default.
- W2589653604 workType "article" @default.