Matches in SemOpenAlex for { <https://semopenalex.org/work/W2589657100> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2589657100 endingPage "236" @default.
- W2589657100 startingPage "229" @default.
- W2589657100 abstract "The efficiency of an ore-processing unit depends on the consistency of the characteristics of raw material entering the plant. When the mined ore is highly variable in quality, the only way to ensure consistency is to homogenize the ore prior to feeding to the processing plant. The homogenization can generally be achieved by the bed blending operation. Given that the stockpiling and reclamation processes are very expensive, it is necessary to design the process in such a way as to minimize variabilities of specified properties of raw material. In this paper, for alternative stacking types, optimal stockpile geometry is found in three stages: First, stockpile input is simulated by sequential Gaussian simulation, and then the variance reduction ratios (VRR) as a criterion of stockpile efficiency are calculated for various stockpile geometry scenarios by a stockpile simulator written in FORTRAN. Second, multiple regression analysis is performed to model the VRR by the use of stockpile length, the number of layers and stacker speed as the independent variables. Finally, the model is an optimization problem. Decision variables are the stockpile length, the number of layers, stacker speed and stacking type. The genetic algorithms (GA) are used to minimize the VRR. The approach was demonstrated on data from an iron orebody. The problem was to reduce fluctuations of iron, silica, alumina and lime contents in the stockpile output. The results showed that the approach could be used for the bed blending design efficiently. Keywords: bed blending design, multiple regression analysis, genetic algorithms, iron ore, content fluctuation" @default.
- W2589657100 created "2017-03-03" @default.
- W2589657100 creator A5058790687 @default.
- W2589657100 date "2006-03-01" @default.
- W2589657100 modified "2023-09-24" @default.
- W2589657100 title "Bed blending design incorporating multiple regression modelling and genetic algorithms" @default.
- W2589657100 cites W1483431698 @default.
- W2589657100 cites W1544329015 @default.
- W2589657100 cites W1559215823 @default.
- W2589657100 cites W1639032689 @default.
- W2589657100 cites W1976713043 @default.
- W2589657100 cites W2005965987 @default.
- W2589657100 cites W2051457075 @default.
- W2589657100 cites W2053107082 @default.
- W2589657100 cites W2065473712 @default.
- W2589657100 cites W2083952967 @default.
- W2589657100 cites W2166843422 @default.
- W2589657100 cites W2187362355 @default.
- W2589657100 cites W2612487376 @default.
- W2589657100 cites W2618903924 @default.
- W2589657100 cites W2891163915 @default.
- W2589657100 cites W2911418807 @default.
- W2589657100 hasPublicationYear "2006" @default.
- W2589657100 type Work @default.
- W2589657100 sameAs 2589657100 @default.
- W2589657100 citedByCount "4" @default.
- W2589657100 countsByYear W25896571002015 @default.
- W2589657100 countsByYear W25896571002018 @default.
- W2589657100 countsByYear W25896571002019 @default.
- W2589657100 countsByYear W25896571002020 @default.
- W2589657100 crossrefType "journal-article" @default.
- W2589657100 hasAuthorship W2589657100A5058790687 @default.
- W2589657100 hasConcept C11413529 @default.
- W2589657100 hasConcept C121332964 @default.
- W2589657100 hasConcept C126255220 @default.
- W2589657100 hasConcept C127413603 @default.
- W2589657100 hasConcept C185544564 @default.
- W2589657100 hasConcept C21880701 @default.
- W2589657100 hasConcept C2781425195 @default.
- W2589657100 hasConcept C33923547 @default.
- W2589657100 hasConcept C41008148 @default.
- W2589657100 hasConcept C8880873 @default.
- W2589657100 hasConceptScore W2589657100C11413529 @default.
- W2589657100 hasConceptScore W2589657100C121332964 @default.
- W2589657100 hasConceptScore W2589657100C126255220 @default.
- W2589657100 hasConceptScore W2589657100C127413603 @default.
- W2589657100 hasConceptScore W2589657100C185544564 @default.
- W2589657100 hasConceptScore W2589657100C21880701 @default.
- W2589657100 hasConceptScore W2589657100C2781425195 @default.
- W2589657100 hasConceptScore W2589657100C33923547 @default.
- W2589657100 hasConceptScore W2589657100C41008148 @default.
- W2589657100 hasConceptScore W2589657100C8880873 @default.
- W2589657100 hasIssue "3" @default.
- W2589657100 hasLocation W25896571001 @default.
- W2589657100 hasOpenAccess W2589657100 @default.
- W2589657100 hasPrimaryLocation W25896571001 @default.
- W2589657100 hasRelatedWork W1976713043 @default.
- W2589657100 hasRelatedWork W2049020618 @default.
- W2589657100 hasRelatedWork W2051457075 @default.
- W2589657100 hasRelatedWork W2083952967 @default.
- W2589657100 hasRelatedWork W2281119391 @default.
- W2589657100 hasRelatedWork W2324840807 @default.
- W2589657100 hasRelatedWork W2348949426 @default.
- W2589657100 hasRelatedWork W2375048879 @default.
- W2589657100 hasRelatedWork W2388107621 @default.
- W2589657100 hasRelatedWork W2612766383 @default.
- W2589657100 hasRelatedWork W2754387491 @default.
- W2589657100 hasRelatedWork W3008875058 @default.
- W2589657100 hasRelatedWork W3097886640 @default.
- W2589657100 hasRelatedWork W1991422639 @default.
- W2589657100 hasRelatedWork W2829928653 @default.
- W2589657100 hasRelatedWork W2848921091 @default.
- W2589657100 hasRelatedWork W2961091199 @default.
- W2589657100 hasRelatedWork W3020405247 @default.
- W2589657100 hasRelatedWork W3061042919 @default.
- W2589657100 hasRelatedWork W3097958557 @default.
- W2589657100 hasVolume "106" @default.
- W2589657100 isParatext "false" @default.
- W2589657100 isRetracted "false" @default.
- W2589657100 magId "2589657100" @default.
- W2589657100 workType "article" @default.