Matches in SemOpenAlex for { <https://semopenalex.org/work/W2589771958> ?p ?o ?g. }
- W2589771958 endingPage "e350" @default.
- W2589771958 startingPage "e350" @default.
- W2589771958 abstract "Radio-frequency (RF) control of an ultrasonic phononic crystal was achieved by encapsulating it in a composite of high k-10% KF-doped BaTiO3 dielectric nanoparticles with poly(N-isopropylacrylamide) (PNIPAm)-based hydrogel. The combination of the nanoparticles and hydrogel produced a composite with elastic properties susceptible to RF actuation. The novel acoustic meta-material enables the regulation of sound waves by electromagnetic waves, which is not possible in a conventional medium as elasto-mechanical waves, and electromagnetic waves do not directly couple. Compared with light waves, radio waves can penetrate deeper into bulk structures and enable the control of propagation of ultrasonic waves through a macroscale phononic crystal. An RF antenna emitting at 318.6 and 422.5 kHz was used to modulate the device in water and ambient air, respectively. An increased transparency of the ultrasonic wave in the material was observed due to an increase in the bandwidth of the modulated device exceeding 8 kHz with a 30-fold increase in the signal modulation at select frequencies. The radio waves induced changes in the transmission and demonstrated the control of ultrasound with applied RF. The synthetic acoustic properties in the resultant meta-material device were actively manipulated through the interaction of electromagnetic waves with the material. Mechanical waves can be controlled by radio waves using a material designed by researchers in the USA and China. Phononic crystals are materials engineered to manipulate sound waves in a desired way. Now, Arup Neogi and co-workers from the University of North Texas and the University of Electronic Science and Technology of China have used a nanoparticle-doped hydrogel to make a phononic crystal sensitive to radio waves — an important development since mechanical waves and electromagnetic waves do not directly interact in nature within conventional materials. The team created an ‘active’ phononic crystal by encapsulating a square lattice of stainless-steel cylinders in a polymer. The polymer contained nanoparticles that are sensitive to radio-frequency electromagnetic waves. The transmission of ultrasonic waves through the material varied depending on the intensity and frequency of an incident radio-frequency signal. Radio-frequency (RF) was used to control ultrasound wave propagating through a phononic crystal based metamaterial device. The tunable metamaterial was realized by interstitially filling the spacing in the phononic crystal with high-k, 10% KF doped BaTiO3 nanoparticles dispersed in poly(N-isopropylacrylamide) (PNIPAM)-based hydrogels. The introduction of high-k nanoparticles enables the hydrogel to have an RF response, thus making a composite with highly variable elastic properties susceptible to RF light. The non-contact mode of applied RF results in a broadening and shift of the transmission spectra resulting in the realization of novel ultrasonic filters and modulators. The RF field also eliminates hybridization and resonance features in the spectra. The metamaterial exhibits tuning of ultrasound waves in both water and air medium." @default.
- W2589771958 created "2017-03-03" @default.
- W2589771958 creator A5034093082 @default.
- W2589771958 creator A5064450387 @default.
- W2589771958 creator A5087300810 @default.
- W2589771958 date "2017-02-01" @default.
- W2589771958 modified "2023-09-26" @default.
- W2589771958 title "Radio-frequency actuated polymer-based phononic meta-materials for control of ultrasonic waves" @default.
- W2589771958 cites W1509501438 @default.
- W2589771958 cites W1773762783 @default.
- W2589771958 cites W177735991 @default.
- W2589771958 cites W1802081001 @default.
- W2589771958 cites W1964324219 @default.
- W2589771958 cites W1977117368 @default.
- W2589771958 cites W1980956745 @default.
- W2589771958 cites W1984090249 @default.
- W2589771958 cites W1984791000 @default.
- W2589771958 cites W1991073770 @default.
- W2589771958 cites W2008637159 @default.
- W2589771958 cites W2020948658 @default.
- W2589771958 cites W2021443749 @default.
- W2589771958 cites W2028259282 @default.
- W2589771958 cites W2031007264 @default.
- W2589771958 cites W2034608905 @default.
- W2589771958 cites W2035109686 @default.
- W2589771958 cites W2035274406 @default.
- W2589771958 cites W2037846519 @default.
- W2589771958 cites W2041311064 @default.
- W2589771958 cites W2042397720 @default.
- W2589771958 cites W2044548163 @default.
- W2589771958 cites W2046059975 @default.
- W2589771958 cites W2046228707 @default.
- W2589771958 cites W2048045574 @default.
- W2589771958 cites W2049667755 @default.
- W2589771958 cites W2051384463 @default.
- W2589771958 cites W2052944796 @default.
- W2589771958 cites W2054166765 @default.
- W2589771958 cites W2064115649 @default.
- W2589771958 cites W2066596632 @default.
- W2589771958 cites W2073474688 @default.
- W2589771958 cites W2077463062 @default.
- W2589771958 cites W2086011050 @default.
- W2589771958 cites W2086327374 @default.
- W2589771958 cites W2087693154 @default.
- W2589771958 cites W2096905311 @default.
- W2589771958 cites W2106371682 @default.
- W2589771958 cites W2130916280 @default.
- W2589771958 cites W2147093999 @default.
- W2589771958 cites W2160271517 @default.
- W2589771958 cites W2265952309 @default.
- W2589771958 cites W2331386311 @default.
- W2589771958 cites W3037264102 @default.
- W2589771958 doi "https://doi.org/10.1038/am.2016.209" @default.
- W2589771958 hasPublicationYear "2017" @default.
- W2589771958 type Work @default.
- W2589771958 sameAs 2589771958 @default.
- W2589771958 citedByCount "15" @default.
- W2589771958 countsByYear W25897719582018 @default.
- W2589771958 countsByYear W25897719582019 @default.
- W2589771958 countsByYear W25897719582020 @default.
- W2589771958 countsByYear W25897719582021 @default.
- W2589771958 countsByYear W25897719582022 @default.
- W2589771958 countsByYear W25897719582023 @default.
- W2589771958 crossrefType "journal-article" @default.
- W2589771958 hasAuthorship W2589771958A5034093082 @default.
- W2589771958 hasAuthorship W2589771958A5064450387 @default.
- W2589771958 hasAuthorship W2589771958A5087300810 @default.
- W2589771958 hasBestOaLocation W25897719581 @default.
- W2589771958 hasConcept C119599485 @default.
- W2589771958 hasConcept C120665830 @default.
- W2589771958 hasConcept C121332964 @default.
- W2589771958 hasConcept C127413603 @default.
- W2589771958 hasConcept C143351421 @default.
- W2589771958 hasConcept C192562407 @default.
- W2589771958 hasConcept C204723758 @default.
- W2589771958 hasConcept C24890656 @default.
- W2589771958 hasConcept C2776257435 @default.
- W2589771958 hasConcept C43179477 @default.
- W2589771958 hasConcept C44886760 @default.
- W2589771958 hasConcept C74064498 @default.
- W2589771958 hasConcept C76155785 @default.
- W2589771958 hasConcept C81288441 @default.
- W2589771958 hasConcept C96513508 @default.
- W2589771958 hasConceptScore W2589771958C119599485 @default.
- W2589771958 hasConceptScore W2589771958C120665830 @default.
- W2589771958 hasConceptScore W2589771958C121332964 @default.
- W2589771958 hasConceptScore W2589771958C127413603 @default.
- W2589771958 hasConceptScore W2589771958C143351421 @default.
- W2589771958 hasConceptScore W2589771958C192562407 @default.
- W2589771958 hasConceptScore W2589771958C204723758 @default.
- W2589771958 hasConceptScore W2589771958C24890656 @default.
- W2589771958 hasConceptScore W2589771958C2776257435 @default.
- W2589771958 hasConceptScore W2589771958C43179477 @default.
- W2589771958 hasConceptScore W2589771958C44886760 @default.
- W2589771958 hasConceptScore W2589771958C74064498 @default.
- W2589771958 hasConceptScore W2589771958C76155785 @default.
- W2589771958 hasConceptScore W2589771958C81288441 @default.
- W2589771958 hasConceptScore W2589771958C96513508 @default.