Matches in SemOpenAlex for { <https://semopenalex.org/work/W2590058526> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2590058526 endingPage "5" @default.
- W2590058526 startingPage "5" @default.
- W2590058526 abstract "Thread-level and data-level parallel architectures have become the design of choice in many of today’s energy-efficient computing systems. However, these architectures put substantially higher requirements on the memory subsystem than scalar architectures, making memory latency and bandwidth critical in their overall efficiency. Data reuse exploration aims at reducing the pressure on the memory subsystem by exploiting the temporal locality in data accesses. In this paper, we investigate the effects on performance and energy from a data reuse methodology combined with parallelization and vectorization in multi- and many-core processors. As a test case, a full-search motion estimation kernel is evaluated on Intel® CoreTM i7-4700K (Haswell) and i7-2600K (Sandy Bridge) multi-core processors, as well as on an Intel® Xeon PhiTM many-core processor (Knights Landing) with Streaming Single Instruction Multiple Data (SIMD) Extensions (SSE) and Advanced Vector Extensions (AVX) instruction sets. Results using a single-threaded execution on the Haswell and Sandy Bridge systems show that performance and EDP (Energy Delay Product) can be improved through data reuse transformations on the scalar code by a factor of ≈3× and ≈6×, respectively. Compared to scalar code without data reuse optimization, the SSE/AVX2 version achieves ≈10×/17× better performance and ≈92×/307× better EDP, respectively. These results can be improved by 10% to 15% using data reuse techniques. Finally, the most optimized version using data reuse and AVX512 achieves a speedup of ≈35× and an EDP improvement of ≈1192× on the Xeon Phi system. While single-threaded execution serves as a common reference point for all architectures to analyze the effects of data reuse on both scalar and vector codes, scalability with thread count is also discussed in the paper." @default.
- W2590058526 created "2017-03-03" @default.
- W2590058526 creator A5001170029 @default.
- W2590058526 creator A5029097110 @default.
- W2590058526 creator A5029254456 @default.
- W2590058526 creator A5068622714 @default.
- W2590058526 date "2017-02-22" @default.
- W2590058526 modified "2023-09-26" @default.
- W2590058526 title "Energy Efficiency Effects of Vectorization in Data Reuse Transformations for Many-Core Processors—A Case Study †" @default.
- W2590058526 cites W2018615919 @default.
- W2590058526 cites W2029014329 @default.
- W2590058526 cites W2082333700 @default.
- W2590058526 cites W2110535003 @default.
- W2590058526 cites W2116861063 @default.
- W2590058526 cites W2122338824 @default.
- W2590058526 cites W2131217241 @default.
- W2590058526 cites W2148075065 @default.
- W2590058526 doi "https://doi.org/10.3390/jlpea7010005" @default.
- W2590058526 hasPublicationYear "2017" @default.
- W2590058526 type Work @default.
- W2590058526 sameAs 2590058526 @default.
- W2590058526 citedByCount "3" @default.
- W2590058526 countsByYear W25900585262017 @default.
- W2590058526 countsByYear W25900585262021 @default.
- W2590058526 crossrefType "journal-article" @default.
- W2590058526 hasAuthorship W2590058526A5001170029 @default.
- W2590058526 hasAuthorship W2590058526A5029097110 @default.
- W2590058526 hasAuthorship W2590058526A5029254456 @default.
- W2590058526 hasAuthorship W2590058526A5068622714 @default.
- W2590058526 hasBestOaLocation W25900585261 @default.
- W2590058526 hasConcept C119599485 @default.
- W2590058526 hasConcept C127413603 @default.
- W2590058526 hasConcept C145108525 @default.
- W2590058526 hasConcept C150552126 @default.
- W2590058526 hasConcept C173608175 @default.
- W2590058526 hasConcept C18903297 @default.
- W2590058526 hasConcept C206588197 @default.
- W2590058526 hasConcept C2742236 @default.
- W2590058526 hasConcept C41008148 @default.
- W2590058526 hasConcept C68339613 @default.
- W2590058526 hasConcept C78766204 @default.
- W2590058526 hasConcept C86803240 @default.
- W2590058526 hasConcept C96972482 @default.
- W2590058526 hasConceptScore W2590058526C119599485 @default.
- W2590058526 hasConceptScore W2590058526C127413603 @default.
- W2590058526 hasConceptScore W2590058526C145108525 @default.
- W2590058526 hasConceptScore W2590058526C150552126 @default.
- W2590058526 hasConceptScore W2590058526C173608175 @default.
- W2590058526 hasConceptScore W2590058526C18903297 @default.
- W2590058526 hasConceptScore W2590058526C206588197 @default.
- W2590058526 hasConceptScore W2590058526C2742236 @default.
- W2590058526 hasConceptScore W2590058526C41008148 @default.
- W2590058526 hasConceptScore W2590058526C68339613 @default.
- W2590058526 hasConceptScore W2590058526C78766204 @default.
- W2590058526 hasConceptScore W2590058526C86803240 @default.
- W2590058526 hasConceptScore W2590058526C96972482 @default.
- W2590058526 hasIssue "1" @default.
- W2590058526 hasLocation W25900585261 @default.
- W2590058526 hasLocation W25900585262 @default.
- W2590058526 hasOpenAccess W2590058526 @default.
- W2590058526 hasPrimaryLocation W25900585261 @default.
- W2590058526 hasRelatedWork W2056079253 @default.
- W2590058526 hasRelatedWork W2118898240 @default.
- W2590058526 hasRelatedWork W2133021870 @default.
- W2590058526 hasRelatedWork W2165645038 @default.
- W2590058526 hasRelatedWork W2538301624 @default.
- W2590058526 hasRelatedWork W2587436494 @default.
- W2590058526 hasRelatedWork W2609129018 @default.
- W2590058526 hasRelatedWork W2613115449 @default.
- W2590058526 hasRelatedWork W2614685449 @default.
- W2590058526 hasRelatedWork W3004176791 @default.
- W2590058526 hasVolume "7" @default.
- W2590058526 isParatext "false" @default.
- W2590058526 isRetracted "false" @default.
- W2590058526 magId "2590058526" @default.
- W2590058526 workType "article" @default.