Matches in SemOpenAlex for { <https://semopenalex.org/work/W2590210438> ?p ?o ?g. }
- W2590210438 abstract "This paper presents an improvement of classification performance for electroencephalography (EEG)-based driver fatigue classification between fatigue and alert states with the data collected from 43 participants. The system employs autoregressive (AR) modeling as the features extraction algorithm, and sparse-deep belief networks (sparse-DBN) as the classification algorithm. Compared to other classifiers, sparse-DBN is a semi supervised learning method which combines unsupervised learning for modeling features in the pre-training layer and supervised learning for classification in the following layer. The sparsity in sparse-DBN is achieved with a regularization term that penalizes a deviation of the expected activation of hidden units from a fixed low-level prevents the network from overfitting and is able to learn low-level structures as well as high-level structures. For comparison, the artificial neural networks (ANN), Bayesian neural networks (BNN) and original deep belief networks (DBN) classifiers are used. The classification results show that using AR feature extractor and DBN classifiers, the classification performance achieves an improved classification performance with a of sensitivity of 90.8%, a specificity of 90.4%, an accuracy of 90.6% and an area under the receiver operating curve (AUROC) of 0.94 compared to ANN (sensitivity at 80.8%, specificity at 77.8%, accuracy at 79.3% with AUC-ROC of 0.83) and BNN classifiers (sensitivity at 84.3%, specificity at 83%, accuracy at 83.6% with AUROC of 0.87). Using the sparse-DBN classifier, the classification performance improved further with sensitivity of 93.9%, a specificity of 92.3% and an accuracy of 93.1% with AUROC of 0.96. Overall, the sparse-DBN classifier improved accuracy by 13.8%, 9.5% and 2.5% over ANN, BNN and DBN classifiers respectively." @default.
- W2590210438 created "2017-03-03" @default.
- W2590210438 creator A5018877662 @default.
- W2590210438 creator A5024125565 @default.
- W2590210438 creator A5029523168 @default.
- W2590210438 creator A5040544025 @default.
- W2590210438 creator A5048555499 @default.
- W2590210438 creator A5051531420 @default.
- W2590210438 creator A5057294414 @default.
- W2590210438 creator A5079852457 @default.
- W2590210438 date "2017-03-07" @default.
- W2590210438 modified "2023-10-15" @default.
- W2590210438 title "Improving EEG-Based Driver Fatigue Classification Using Sparse-Deep Belief Networks" @default.
- W2590210438 cites W1487093406 @default.
- W2590210438 cites W1596035946 @default.
- W2590210438 cites W17058891 @default.
- W2590210438 cites W1964867524 @default.
- W2590210438 cites W1967850804 @default.
- W2590210438 cites W1970374581 @default.
- W2590210438 cites W1974687042 @default.
- W2590210438 cites W1980643059 @default.
- W2590210438 cites W1992410255 @default.
- W2590210438 cites W2004824219 @default.
- W2590210438 cites W2008008156 @default.
- W2590210438 cites W2008108047 @default.
- W2590210438 cites W2008205547 @default.
- W2590210438 cites W2020964464 @default.
- W2590210438 cites W2023133322 @default.
- W2590210438 cites W2032977109 @default.
- W2590210438 cites W2035166210 @default.
- W2590210438 cites W2035182037 @default.
- W2590210438 cites W2043133488 @default.
- W2590210438 cites W2043641984 @default.
- W2590210438 cites W2054237600 @default.
- W2590210438 cites W2055049416 @default.
- W2590210438 cites W2069032590 @default.
- W2590210438 cites W2069747869 @default.
- W2590210438 cites W2075000159 @default.
- W2590210438 cites W2078707072 @default.
- W2590210438 cites W2079167592 @default.
- W2590210438 cites W2096290346 @default.
- W2590210438 cites W2096451472 @default.
- W2590210438 cites W2100495367 @default.
- W2590210438 cites W2102542124 @default.
- W2590210438 cites W2117100955 @default.
- W2590210438 cites W2117470462 @default.
- W2590210438 cites W2118492722 @default.
- W2590210438 cites W2122757225 @default.
- W2590210438 cites W2131213359 @default.
- W2590210438 cites W2136922672 @default.
- W2590210438 cites W2141778357 @default.
- W2590210438 cites W2146976664 @default.
- W2590210438 cites W2160815625 @default.
- W2590210438 cites W2177405552 @default.
- W2590210438 cites W2286439238 @default.
- W2590210438 cites W2316106704 @default.
- W2590210438 cites W2919115771 @default.
- W2590210438 cites W3098943317 @default.
- W2590210438 cites W4231109964 @default.
- W2590210438 doi "https://doi.org/10.3389/fnins.2017.00103" @default.
- W2590210438 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5339284" @default.
- W2590210438 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28326009" @default.
- W2590210438 hasPublicationYear "2017" @default.
- W2590210438 type Work @default.
- W2590210438 sameAs 2590210438 @default.
- W2590210438 citedByCount "102" @default.
- W2590210438 countsByYear W25902104382017 @default.
- W2590210438 countsByYear W25902104382018 @default.
- W2590210438 countsByYear W25902104382019 @default.
- W2590210438 countsByYear W25902104382020 @default.
- W2590210438 countsByYear W25902104382021 @default.
- W2590210438 countsByYear W25902104382022 @default.
- W2590210438 countsByYear W25902104382023 @default.
- W2590210438 crossrefType "journal-article" @default.
- W2590210438 hasAuthorship W2590210438A5018877662 @default.
- W2590210438 hasAuthorship W2590210438A5024125565 @default.
- W2590210438 hasAuthorship W2590210438A5029523168 @default.
- W2590210438 hasAuthorship W2590210438A5040544025 @default.
- W2590210438 hasAuthorship W2590210438A5048555499 @default.
- W2590210438 hasAuthorship W2590210438A5051531420 @default.
- W2590210438 hasAuthorship W2590210438A5057294414 @default.
- W2590210438 hasAuthorship W2590210438A5079852457 @default.
- W2590210438 hasBestOaLocation W25902104381 @default.
- W2590210438 hasConcept C108583219 @default.
- W2590210438 hasConcept C119857082 @default.
- W2590210438 hasConcept C12267149 @default.
- W2590210438 hasConcept C127413603 @default.
- W2590210438 hasConcept C153180895 @default.
- W2590210438 hasConcept C154945302 @default.
- W2590210438 hasConcept C21200559 @default.
- W2590210438 hasConcept C22019652 @default.
- W2590210438 hasConcept C24326235 @default.
- W2590210438 hasConcept C41008148 @default.
- W2590210438 hasConcept C50644808 @default.
- W2590210438 hasConcept C52001869 @default.
- W2590210438 hasConcept C58471807 @default.
- W2590210438 hasConcept C81363708 @default.
- W2590210438 hasConcept C95623464 @default.
- W2590210438 hasConcept C97385483 @default.
- W2590210438 hasConceptScore W2590210438C108583219 @default.