Matches in SemOpenAlex for { <https://semopenalex.org/work/W2590661630> ?p ?o ?g. }
- W2590661630 endingPage "1108" @default.
- W2590661630 startingPage "1097" @default.
- W2590661630 abstract "To address time consuming and parameter sensitivity in the emerging decomposition- ensemble models, this paper develops a non-iterative learning paradigm without iterative training process. Different from the most existing decomposition-ensemble models using statistical or iterative approaches as individual forecasting tools, the proposed work otherwise employs the efficient and fast non-iterative algorithm—random vector functional link (RVFL) network with randomly fixed weights and direct input-output links. Three major steps are included: decomposition via ensemble empirical mode decomposition (EEMD), prediction via RVFL network, and ensemble via linear addition. With crude oil price as studying sample, the proposed EEMD-based RVFL network performs significantly better in terms of prediction accuracy than not only single algorithms such as RVFL network, extreme learning machine (ELM), kernel ridge regression, random forest, back propagation neural network, least square support vector regression, and autoregressive integrated moving average, but also their respective EEMD-based ensemble variants. As for speed ranking, RVFL network developed in 1994 ranks the first among all the listed methods, and EEMD-based RVFL network defeats all the ensemble methods and most single methods, possibly due to the fact that RVFL network with direct input-output links needs far less enhancement nodes and hence a shorter computational time than those without the direct links such as the ELM developed in 2006." @default.
- W2590661630 created "2017-03-03" @default.
- W2590661630 creator A5033006879 @default.
- W2590661630 creator A5058109866 @default.
- W2590661630 creator A5084708538 @default.
- W2590661630 date "2018-09-01" @default.
- W2590661630 modified "2023-10-16" @default.
- W2590661630 title "A non-iterative decomposition-ensemble learning paradigm using RVFL network for crude oil price forecasting" @default.
- W2590661630 cites W1013900715 @default.
- W2590661630 cites W1181113747 @default.
- W2590661630 cites W126112123 @default.
- W2590661630 cites W1550778365 @default.
- W2590661630 cites W1967165756 @default.
- W2590661630 cites W1970978817 @default.
- W2590661630 cites W1975783225 @default.
- W2590661630 cites W1977767353 @default.
- W2590661630 cites W1986211833 @default.
- W2590661630 cites W1988845048 @default.
- W2590661630 cites W1993887071 @default.
- W2590661630 cites W1996640396 @default.
- W2590661630 cites W1997522936 @default.
- W2590661630 cites W1997910282 @default.
- W2590661630 cites W2003608156 @default.
- W2590661630 cites W2011691646 @default.
- W2590661630 cites W2011864101 @default.
- W2590661630 cites W2016944307 @default.
- W2590661630 cites W2018404189 @default.
- W2590661630 cites W2019037940 @default.
- W2590661630 cites W2030486394 @default.
- W2590661630 cites W2033275656 @default.
- W2590661630 cites W2046794274 @default.
- W2590661630 cites W2062055237 @default.
- W2590661630 cites W2074464748 @default.
- W2590661630 cites W2084251795 @default.
- W2590661630 cites W2087936470 @default.
- W2590661630 cites W2120390927 @default.
- W2590661630 cites W2121541969 @default.
- W2590661630 cites W2122109421 @default.
- W2590661630 cites W2123223828 @default.
- W2590661630 cites W2135483297 @default.
- W2590661630 cites W2138383519 @default.
- W2590661630 cites W2143325737 @default.
- W2590661630 cites W2145862305 @default.
- W2590661630 cites W2229668941 @default.
- W2590661630 cites W2306169448 @default.
- W2590661630 cites W2321536237 @default.
- W2590661630 cites W2586192507 @default.
- W2590661630 cites W388323479 @default.
- W2590661630 doi "https://doi.org/10.1016/j.asoc.2017.02.013" @default.
- W2590661630 hasPublicationYear "2018" @default.
- W2590661630 type Work @default.
- W2590661630 sameAs 2590661630 @default.
- W2590661630 citedByCount "93" @default.
- W2590661630 countsByYear W25906616302017 @default.
- W2590661630 countsByYear W25906616302018 @default.
- W2590661630 countsByYear W25906616302019 @default.
- W2590661630 countsByYear W25906616302020 @default.
- W2590661630 countsByYear W25906616302021 @default.
- W2590661630 countsByYear W25906616302022 @default.
- W2590661630 countsByYear W25906616302023 @default.
- W2590661630 crossrefType "journal-article" @default.
- W2590661630 hasAuthorship W2590661630A5033006879 @default.
- W2590661630 hasAuthorship W2590661630A5058109866 @default.
- W2590661630 hasAuthorship W2590661630A5084708538 @default.
- W2590661630 hasConcept C11413529 @default.
- W2590661630 hasConcept C119857082 @default.
- W2590661630 hasConcept C12267149 @default.
- W2590661630 hasConcept C154945302 @default.
- W2590661630 hasConcept C2780150128 @default.
- W2590661630 hasConcept C41008148 @default.
- W2590661630 hasConcept C45942800 @default.
- W2590661630 hasConcept C50644808 @default.
- W2590661630 hasConceptScore W2590661630C11413529 @default.
- W2590661630 hasConceptScore W2590661630C119857082 @default.
- W2590661630 hasConceptScore W2590661630C12267149 @default.
- W2590661630 hasConceptScore W2590661630C154945302 @default.
- W2590661630 hasConceptScore W2590661630C2780150128 @default.
- W2590661630 hasConceptScore W2590661630C41008148 @default.
- W2590661630 hasConceptScore W2590661630C45942800 @default.
- W2590661630 hasConceptScore W2590661630C50644808 @default.
- W2590661630 hasFunder F4320321001 @default.
- W2590661630 hasLocation W25906616301 @default.
- W2590661630 hasOpenAccess W2590661630 @default.
- W2590661630 hasPrimaryLocation W25906616301 @default.
- W2590661630 hasRelatedWork W1191482210 @default.
- W2590661630 hasRelatedWork W2900445707 @default.
- W2590661630 hasRelatedWork W2905251838 @default.
- W2590661630 hasRelatedWork W2969890106 @default.
- W2590661630 hasRelatedWork W3009797526 @default.
- W2590661630 hasRelatedWork W4210302090 @default.
- W2590661630 hasRelatedWork W4285046548 @default.
- W2590661630 hasRelatedWork W4285741730 @default.
- W2590661630 hasRelatedWork W4324137541 @default.
- W2590661630 hasRelatedWork W4376643315 @default.
- W2590661630 hasVolume "70" @default.
- W2590661630 isParatext "false" @default.
- W2590661630 isRetracted "false" @default.
- W2590661630 magId "2590661630" @default.