Matches in SemOpenAlex for { <https://semopenalex.org/work/W2590714056> ?p ?o ?g. }
- W2590714056 abstract "In general video game playing, the challenge is to create agents that play unseen games proficiently. Stochastic tree search algorithms, like Monte Carlo Tree Search, perform relatively well on this task. However, performance is non-transitive: different agents perform best in different games, which means that there is not a single agent that is the best in all the games. Rather, some types of games are dominated by a few agents whereas other different agents dominate other types of games. Thus, it should be possible to construct a hyper-agent that selects from a portfolio, in which constituent sub-agents will play a new game best. Since there is no knowledge about the games, the agent needs to use available features to predict the most suitable algorithm. This work constructs such a hyper-agent using the General Video Game Playing Framework (GVGAI). The proposed method achieves promising results that show the applicability of hyper-heuristics in general video game playing and related tasks." @default.
- W2590714056 created "2017-03-03" @default.
- W2590714056 creator A5002087173 @default.
- W2590714056 creator A5026815300 @default.
- W2590714056 creator A5077267552 @default.
- W2590714056 date "2016-09-01" @default.
- W2590714056 modified "2023-09-25" @default.
- W2590714056 title "Hyper-heuristic general video game playing" @default.
- W2590714056 cites W1510381913 @default.
- W2590714056 cites W1512753441 @default.
- W2590714056 cites W1522851739 @default.
- W2590714056 cites W1555677953 @default.
- W2590714056 cites W167544607 @default.
- W2590714056 cites W1807713839 @default.
- W2590714056 cites W1814515812 @default.
- W2590714056 cites W1910077957 @default.
- W2590714056 cites W1923890037 @default.
- W2590714056 cites W1974828111 @default.
- W2590714056 cites W1977997977 @default.
- W2590714056 cites W1989380511 @default.
- W2590714056 cites W1998738752 @default.
- W2590714056 cites W2013951121 @default.
- W2590714056 cites W2015865970 @default.
- W2590714056 cites W2019257274 @default.
- W2590714056 cites W2022527706 @default.
- W2590714056 cites W2063137870 @default.
- W2590714056 cites W2072441740 @default.
- W2590714056 cites W2087311205 @default.
- W2590714056 cites W2089213632 @default.
- W2590714056 cites W2101493843 @default.
- W2590714056 cites W2112681424 @default.
- W2590714056 cites W2126316555 @default.
- W2590714056 cites W2132990921 @default.
- W2590714056 cites W2145680191 @default.
- W2590714056 cites W2147148915 @default.
- W2590714056 cites W2148542244 @default.
- W2590714056 cites W2154965609 @default.
- W2590714056 cites W2158392329 @default.
- W2590714056 cites W2165207629 @default.
- W2590714056 cites W2169209574 @default.
- W2590714056 cites W2312463915 @default.
- W2590714056 cites W2399790246 @default.
- W2590714056 cites W2577408049 @default.
- W2590714056 cites W4292166681 @default.
- W2590714056 doi "https://doi.org/10.1109/cig.2016.7860398" @default.
- W2590714056 hasPublicationYear "2016" @default.
- W2590714056 type Work @default.
- W2590714056 sameAs 2590714056 @default.
- W2590714056 citedByCount "21" @default.
- W2590714056 countsByYear W25907140562017 @default.
- W2590714056 countsByYear W25907140562018 @default.
- W2590714056 countsByYear W25907140562019 @default.
- W2590714056 countsByYear W25907140562020 @default.
- W2590714056 countsByYear W25907140562021 @default.
- W2590714056 countsByYear W25907140562022 @default.
- W2590714056 countsByYear W25907140562023 @default.
- W2590714056 crossrefType "proceedings-article" @default.
- W2590714056 hasAuthorship W2590714056A5002087173 @default.
- W2590714056 hasAuthorship W2590714056A5026815300 @default.
- W2590714056 hasAuthorship W2590714056A5077267552 @default.
- W2590714056 hasConcept C102234262 @default.
- W2590714056 hasConcept C105795698 @default.
- W2590714056 hasConcept C106159729 @default.
- W2590714056 hasConcept C111919701 @default.
- W2590714056 hasConcept C113174947 @default.
- W2590714056 hasConcept C127705205 @default.
- W2590714056 hasConcept C134306372 @default.
- W2590714056 hasConcept C144237770 @default.
- W2590714056 hasConcept C154945302 @default.
- W2590714056 hasConcept C162324750 @default.
- W2590714056 hasConcept C170828538 @default.
- W2590714056 hasConcept C173801870 @default.
- W2590714056 hasConcept C177142836 @default.
- W2590714056 hasConcept C187736073 @default.
- W2590714056 hasConcept C19499675 @default.
- W2590714056 hasConcept C199360897 @default.
- W2590714056 hasConcept C2780451532 @default.
- W2590714056 hasConcept C2780801425 @default.
- W2590714056 hasConcept C2780821815 @default.
- W2590714056 hasConcept C3018412434 @default.
- W2590714056 hasConcept C33923547 @default.
- W2590714056 hasConcept C41008148 @default.
- W2590714056 hasConcept C46149586 @default.
- W2590714056 hasConcept C47187476 @default.
- W2590714056 hasConcept C49774154 @default.
- W2590714056 hasConcept C56694532 @default.
- W2590714056 hasConcept C73795354 @default.
- W2590714056 hasConcept C95815963 @default.
- W2590714056 hasConceptScore W2590714056C102234262 @default.
- W2590714056 hasConceptScore W2590714056C105795698 @default.
- W2590714056 hasConceptScore W2590714056C106159729 @default.
- W2590714056 hasConceptScore W2590714056C111919701 @default.
- W2590714056 hasConceptScore W2590714056C113174947 @default.
- W2590714056 hasConceptScore W2590714056C127705205 @default.
- W2590714056 hasConceptScore W2590714056C134306372 @default.
- W2590714056 hasConceptScore W2590714056C144237770 @default.
- W2590714056 hasConceptScore W2590714056C154945302 @default.
- W2590714056 hasConceptScore W2590714056C162324750 @default.
- W2590714056 hasConceptScore W2590714056C170828538 @default.
- W2590714056 hasConceptScore W2590714056C173801870 @default.