Matches in SemOpenAlex for { <https://semopenalex.org/work/W2590796767> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2590796767 abstract "The presidential election results of 2016 surprised many poll-watchers, suggesting possible biases in estimated support for the major party candidates and posing a challenge for poll aggregation as a prediction tool. Using data from earlier elections and the 2016 campaign, we conducted an evaluation of poll aggregation and state-level error in estimating the percentage spread between the two major candidates. We find that state-level estimates of the error magnitude for the FiveThirtyEight and Upshot models were approximately correct in 2016. However, a proportional bias that we term “prediction shrinkage,” due to non-major party preference during polling, had a large impact on state-level estimates. We suggest that prediction shrinkage may be largely avoided by using log-ratios of candidate preferences instead of percentage spread. We present a statistical rationale for simulation-based assessments of election probabilities, discussing aspects that may be understood by practitioners but not fully explicated in the literature. For 2016, we fit a smoothing mixed effects model that is sensitive to both national and state-specific trends and requires data from only a single election year. The model outperformed all the major prediction site estimates. Simulations of electoral college outcomes indicate that, on the eve of the election, the probability of a Trump victory was about 50%. The results do not support the contention that the poll averages were highly biased, but suggest that standard poll aggregation techniques were poorly equipped to respond to a late change in relative support for the candidates. We suggest that an increased emphasis on fundamental statistical tradeoffs of bias and variance, prior to focusing on poll adjustments or demographic behavior, may be the key to improved prediction." @default.
- W2590796767 created "2017-03-03" @default.
- W2590796767 creator A5016238665 @default.
- W2590796767 creator A5044611664 @default.
- W2590796767 date "2017-01-01" @default.
- W2590796767 modified "2023-09-26" @default.
- W2590796767 title "How Surprising Was Trump's Victory? Notes on Predictions in the 2016 U.S. Presidential Election" @default.
- W2590796767 cites W1981457167 @default.
- W2590796767 cites W3123877736 @default.
- W2590796767 cites W3148106702 @default.
- W2590796767 doi "https://doi.org/10.2139/ssrn.2900394" @default.
- W2590796767 hasPublicationYear "2017" @default.
- W2590796767 type Work @default.
- W2590796767 sameAs 2590796767 @default.
- W2590796767 citedByCount "0" @default.
- W2590796767 crossrefType "journal-article" @default.
- W2590796767 hasAuthorship W2590796767A5016238665 @default.
- W2590796767 hasAuthorship W2590796767A5044611664 @default.
- W2590796767 hasConcept C105795698 @default.
- W2590796767 hasConcept C111919701 @default.
- W2590796767 hasConcept C149782125 @default.
- W2590796767 hasConcept C162324750 @default.
- W2590796767 hasConcept C17744445 @default.
- W2590796767 hasConcept C197487636 @default.
- W2590796767 hasConcept C199539241 @default.
- W2590796767 hasConcept C204854418 @default.
- W2590796767 hasConcept C2776129789 @default.
- W2590796767 hasConcept C2779220109 @default.
- W2590796767 hasConcept C2781249084 @default.
- W2590796767 hasConcept C33923547 @default.
- W2590796767 hasConcept C3770464 @default.
- W2590796767 hasConcept C41008148 @default.
- W2590796767 hasConcept C520049643 @default.
- W2590796767 hasConcept C59742305 @default.
- W2590796767 hasConcept C94625758 @default.
- W2590796767 hasConceptScore W2590796767C105795698 @default.
- W2590796767 hasConceptScore W2590796767C111919701 @default.
- W2590796767 hasConceptScore W2590796767C149782125 @default.
- W2590796767 hasConceptScore W2590796767C162324750 @default.
- W2590796767 hasConceptScore W2590796767C17744445 @default.
- W2590796767 hasConceptScore W2590796767C197487636 @default.
- W2590796767 hasConceptScore W2590796767C199539241 @default.
- W2590796767 hasConceptScore W2590796767C204854418 @default.
- W2590796767 hasConceptScore W2590796767C2776129789 @default.
- W2590796767 hasConceptScore W2590796767C2779220109 @default.
- W2590796767 hasConceptScore W2590796767C2781249084 @default.
- W2590796767 hasConceptScore W2590796767C33923547 @default.
- W2590796767 hasConceptScore W2590796767C3770464 @default.
- W2590796767 hasConceptScore W2590796767C41008148 @default.
- W2590796767 hasConceptScore W2590796767C520049643 @default.
- W2590796767 hasConceptScore W2590796767C59742305 @default.
- W2590796767 hasConceptScore W2590796767C94625758 @default.
- W2590796767 hasLocation W25907967671 @default.
- W2590796767 hasOpenAccess W2590796767 @default.
- W2590796767 hasPrimaryLocation W25907967671 @default.
- W2590796767 hasRelatedWork W1543954887 @default.
- W2590796767 hasRelatedWork W1593665090 @default.
- W2590796767 hasRelatedWork W1965609999 @default.
- W2590796767 hasRelatedWork W1976584326 @default.
- W2590796767 hasRelatedWork W1993482458 @default.
- W2590796767 hasRelatedWork W2080905066 @default.
- W2590796767 hasRelatedWork W2107249398 @default.
- W2590796767 hasRelatedWork W2110189256 @default.
- W2590796767 hasRelatedWork W2161637810 @default.
- W2590796767 hasRelatedWork W2166556404 @default.
- W2590796767 hasRelatedWork W2605589255 @default.
- W2590796767 hasRelatedWork W2605823935 @default.
- W2590796767 hasRelatedWork W2746723409 @default.
- W2590796767 hasRelatedWork W2980341473 @default.
- W2590796767 hasRelatedWork W3006375358 @default.
- W2590796767 hasRelatedWork W3081502239 @default.
- W2590796767 hasRelatedWork W3087592286 @default.
- W2590796767 hasRelatedWork W3097353471 @default.
- W2590796767 hasRelatedWork W3097498243 @default.
- W2590796767 hasRelatedWork W3116700794 @default.
- W2590796767 isParatext "false" @default.
- W2590796767 isRetracted "false" @default.
- W2590796767 magId "2590796767" @default.
- W2590796767 workType "article" @default.