Matches in SemOpenAlex for { <https://semopenalex.org/work/W2590802212> ?p ?o ?g. }
- W2590802212 endingPage "280" @default.
- W2590802212 startingPage "263" @default.
- W2590802212 abstract "Halotolerent bacteria are those that can tolerate a broad range of NaCl concentrations (0-32% w/v) (Hezayen et al., 2010). So, there are different categories of halotolerant microbes: not tolerate, those which tolerate only a small concentrations of salt about 1%, slightly tolerant (6-8%), moderately tolerant (18-22%) and extremely tolerant, those microbes that grow over the whole range of salt concentrations (0-32%) (Larsen, 1986). Recently, Parthiban et al. (2010) classified halophilic bacteria according to their salt requirement and growth pattern to slight halophiles which growth at 2-5% NaCl, moderate halophiles which growth at 5-20% NaCl and extreme halophiles which growth at 20-30% NaCl. Extreme halophiles are microorganisms that grow under hostile to most organisms. Some of them, such as bacteria which thrive in hypersaline environments have been recognized for their use in biotechnological remediation applications. The applied of halophilic bacteria include recovery of saline soil by directly supporting of growth of vegetation thus indirectly increasing crop yields in saline soil. The other application of halophilic bacteria was in food and pharmaceutical industries, production of enzymes, polymers and various cosmetic products. The possibility of application of halophilic bacteria in soil is recovery and the importance of microbial diversity in soil (Kannika, 2003). Haophilic microorganisms respond to high salt external environment by accumulating osmotic in their cytosol, which protects them from cytoplasmic dehydration. Osmophily refers to the osmotic aspects of life at high salt concentrations, especially turgor pressure, cellular dehydration and desiccation. Halophily refers to the ionic requirements for life at high salt concentrations. Halophilic microorganisms usually adopt either at the two strategies of survival in saline environments: compatible solute strategy and salt-in strategy. Compatible solute strategy is employed by the majority of moderately halophlic and halotolerant bacteria, some yeasts, algae and fungi. In this strategy, cell maintains low concentrations of salt in their cytoplasm by balancing osmotic potential through the synthesis or uptake of organic compatible solutes. Hence these microorganisms are able to adapt to a wide range of salt concentrations. The compatible solutes include polyols such as glycerol, sugars and their derivatives, amino acids and their derivatives as well as quaternary amines such as glycine betaine and ectoines. Compatible solutes display a general stabilizing effect by preventing the unfolding and denaturation of proteins caused by heating, freezing and drying (Ventosa et al., 1998). The salt-in strategy is employed by true halophilies, including halophilic archaea and extremely halophilic bacteria. These microorganisms are adapted to high salt concentrations and cannot survive when the salinity of the medium is lowered. They generally do not synthesize organic solutes to maintain the osmotic equilibrium. This adaptation involves the selective influx of K+ ions into the cytoplasm. All enzymes and structural cell components must to be adapted to high salt concentrations for proper cell function (Shivanand and Mugeraya, 2011). Extreme environments such as acidic, thermophilic, hypersaline, and arid regions, are important ‘hot spots’ of microbial ‘megadiversity’. These are habitats of microorganisms which have the genetic and physiological capacity to survive and grow under these harsh or extreme conditions (Woese, 1987; Olsen et al., 1994). Extensive studies have been made in recent years into hyper saline environments resulting in a large number of new halophilic species being isolated e.g. Oceanobacillus aswanensis, it was isolated from salted fish sauce in Aswan city, Egypt (Hezayen et al., 2010), Paenibacillus chungwensis which isolated from Marakanam salterns in India (Parthiban et al., 2010). Gram-negative halophilic (Vibrio, Alteromonas, Acinetobacter, Marinomonas and Pseudomonas) (Prado et al., 1991) and Gram positive halophilic (Staphylococcus, Marinococcus, Sporosarcina Salinococcus and Bacillus) have been recovered from saline soils, salterns and activated sludge (Farrow et al., 1992; Ajibola et al., 2005; Olukanni et al., 2006; Elisangela et al., 2009). Staphylococcus spp., Micrococcus spp. and Bacillus spp. have been isolated from sea water and tropical marine fish but little information has been reported on the species level identities or specific sources of these bacteria (Surendran et al., 1989; Uddin et al., 2001; Rao and Surendran, 2003; Swaminathan et al., 2007; Jeyasekaran et al., 2008). The main objective of this study was to (1) isolation and characterization of some salt tolerant bacteria from salinity soil in Sharkia Governorate, (2) determine the protein pattern in halophilic bacteria and (3) studying the ability of salt tolerant gene(s) to transfer by natural gene transfer mechanisms." @default.
- W2590802212 created "2017-03-03" @default.
- W2590802212 creator A5018166810 @default.
- W2590802212 creator A5073844584 @default.
- W2590802212 date "2011-07-01" @default.
- W2590802212 modified "2023-10-09" @default.
- W2590802212 title "SALT INDUCIBLE-PROTEINS AND CONJUGAL GENE TRANSFER OF HALOTOLERANT Staphylococcus ISOLATED FROM SALINITY SOIL" @default.
- W2590802212 cites W147154939 @default.
- W2590802212 cites W1485044783 @default.
- W2590802212 cites W1543102554 @default.
- W2590802212 cites W1645874374 @default.
- W2590802212 cites W1821199741 @default.
- W2590802212 cites W1964158328 @default.
- W2590802212 cites W1969834334 @default.
- W2590802212 cites W1991300280 @default.
- W2590802212 cites W2037389524 @default.
- W2590802212 cites W2055887505 @default.
- W2590802212 cites W2065769665 @default.
- W2590802212 cites W2072608975 @default.
- W2590802212 cites W2073609514 @default.
- W2590802212 cites W2079978974 @default.
- W2590802212 cites W2091093142 @default.
- W2590802212 cites W2095541393 @default.
- W2590802212 cites W2096070179 @default.
- W2590802212 cites W2100837269 @default.
- W2590802212 cites W2102484389 @default.
- W2590802212 cites W2103579675 @default.
- W2590802212 cites W2104454769 @default.
- W2590802212 cites W2113490663 @default.
- W2590802212 cites W2114639123 @default.
- W2590802212 cites W2125257076 @default.
- W2590802212 cites W2133273299 @default.
- W2590802212 cites W2151367675 @default.
- W2590802212 cites W2164513672 @default.
- W2590802212 cites W2176790240 @default.
- W2590802212 cites W2225616266 @default.
- W2590802212 cites W2253370523 @default.
- W2590802212 cites W3026765945 @default.
- W2590802212 cites W2489973758 @default.
- W2590802212 cites W2513132488 @default.
- W2590802212 cites W2964543835 @default.
- W2590802212 doi "https://doi.org/10.21608/ejgc.2011.10792" @default.
- W2590802212 hasPublicationYear "2011" @default.
- W2590802212 type Work @default.
- W2590802212 sameAs 2590802212 @default.
- W2590802212 citedByCount "4" @default.
- W2590802212 countsByYear W25908022122014 @default.
- W2590802212 countsByYear W25908022122017 @default.
- W2590802212 countsByYear W25908022122019 @default.
- W2590802212 crossrefType "journal-article" @default.
- W2590802212 hasAuthorship W2590802212A5018166810 @default.
- W2590802212 hasAuthorship W2590802212A5073844584 @default.
- W2590802212 hasBestOaLocation W25908022121 @default.
- W2590802212 hasConcept C104317684 @default.
- W2590802212 hasConcept C129513315 @default.
- W2590802212 hasConcept C141650431 @default.
- W2590802212 hasConcept C147789679 @default.
- W2590802212 hasConcept C185592680 @default.
- W2590802212 hasConcept C18903297 @default.
- W2590802212 hasConcept C2776371256 @default.
- W2590802212 hasConcept C3018928802 @default.
- W2590802212 hasConcept C30992042 @default.
- W2590802212 hasConcept C54355233 @default.
- W2590802212 hasConcept C59822182 @default.
- W2590802212 hasConcept C86803240 @default.
- W2590802212 hasConcept C89423630 @default.
- W2590802212 hasConcept C90132467 @default.
- W2590802212 hasConcept C92938381 @default.
- W2590802212 hasConceptScore W2590802212C104317684 @default.
- W2590802212 hasConceptScore W2590802212C129513315 @default.
- W2590802212 hasConceptScore W2590802212C141650431 @default.
- W2590802212 hasConceptScore W2590802212C147789679 @default.
- W2590802212 hasConceptScore W2590802212C185592680 @default.
- W2590802212 hasConceptScore W2590802212C18903297 @default.
- W2590802212 hasConceptScore W2590802212C2776371256 @default.
- W2590802212 hasConceptScore W2590802212C3018928802 @default.
- W2590802212 hasConceptScore W2590802212C30992042 @default.
- W2590802212 hasConceptScore W2590802212C54355233 @default.
- W2590802212 hasConceptScore W2590802212C59822182 @default.
- W2590802212 hasConceptScore W2590802212C86803240 @default.
- W2590802212 hasConceptScore W2590802212C89423630 @default.
- W2590802212 hasConceptScore W2590802212C90132467 @default.
- W2590802212 hasConceptScore W2590802212C92938381 @default.
- W2590802212 hasIssue "2" @default.
- W2590802212 hasLocation W25908022121 @default.
- W2590802212 hasOpenAccess W2590802212 @default.
- W2590802212 hasPrimaryLocation W25908022121 @default.
- W2590802212 hasRelatedWork W1964884667 @default.
- W2590802212 hasRelatedWork W2019988726 @default.
- W2590802212 hasRelatedWork W2093161121 @default.
- W2590802212 hasRelatedWork W2292931763 @default.
- W2590802212 hasRelatedWork W2374798464 @default.
- W2590802212 hasRelatedWork W2981806118 @default.
- W2590802212 hasRelatedWork W4283766076 @default.
- W2590802212 hasRelatedWork W4312223690 @default.
- W2590802212 hasRelatedWork W4317714682 @default.
- W2590802212 hasRelatedWork W4362466196 @default.
- W2590802212 hasVolume "40" @default.