Matches in SemOpenAlex for { <https://semopenalex.org/work/W2591205007> ?p ?o ?g. }
- W2591205007 endingPage "25" @default.
- W2591205007 startingPage "13" @default.
- W2591205007 abstract "Ground deformation observed using near-real time geodetic methods, such as InSAR and GPS, can provide critical information about the evolution of a magma chamber prior to volcanic eruption. Rapid advancement in numerical modeling capabilities has resulted in a number of finite element models targeted at better understanding the connection between surface uplift associated with magma chamber pressurization and the potential for volcanic eruption. Robust model-data fusion techniques are necessary to take full advantage of the numerical models and the volcano monitoring observations currently available. In this study, we develop a 3D data assimilation framework using the Ensemble Kalman Filter (EnKF) approach in order to combine geodetic observations of surface deformation with geodynamic models to investigate volcanic unrest. The EnKF sequential assimilation method utilizes disparate data sets as they become available to update geodynamic models of magma reservoir evolution. While the EnKF has been widely applied in hydrologic and climate modeling, the adaptation for volcano monitoring is in its initial stages. As such, our investigation focuses on conducting a series of sensitivity tests to optimize the EnKF for volcano applications and on developing specific strategies for assimilation of geodetic data. Our numerical experiments illustrate that the EnKF is able to adapt well to the spatial limitations posed by GPS data and the temporal limitations of InSAR, and that specific strategies can be adopted to enhance EnKF performance to improve model forecasts. Specifically, our numerical experiments indicate that: (1) incorporating additional iterations of the EnKF analysis step is more efficient than increasing the number of ensemble members; (2) the accuracy of the EnKF results are not affected by initial parameter assumptions; (3) GPS observations near the center of uplift improve the quality of model forecasts; (4) occasionally shifting continuous GPS stations to provide variability in the locations of observations results in better model predictions than utilizing fixed locations when the number of available instruments is limited; (5) spotty InSAR data coverage on the flanks of a volcano due to topographic shadows and/or atmospheric interference does not adversely impact the effectiveness of EnKF if the available coverage is > 50%; and (6) snow or glacial obstruction in the center of uplift can adversely impact EnKF forecasts. By utilizing these strategies, we conclude that the EnKF is an effective sequential model-data fusion technique for assimilating multiple geodetic observations to forecast volcanic activity at restless volcanoes." @default.
- W2591205007 created "2017-03-03" @default.
- W2591205007 creator A5009117784 @default.
- W2591205007 creator A5037700263 @default.
- W2591205007 date "2017-09-01" @default.
- W2591205007 modified "2023-09-30" @default.
- W2591205007 title "Data assimilation strategies for volcano geodesy" @default.
- W2591205007 cites W1494372390 @default.
- W2591205007 cites W1515308538 @default.
- W2591205007 cites W1515856111 @default.
- W2591205007 cites W1549530671 @default.
- W2591205007 cites W1551269686 @default.
- W2591205007 cites W1582778708 @default.
- W2591205007 cites W1636288778 @default.
- W2591205007 cites W1818230177 @default.
- W2591205007 cites W1905941488 @default.
- W2591205007 cites W1912123584 @default.
- W2591205007 cites W1963746896 @default.
- W2591205007 cites W1965207910 @default.
- W2591205007 cites W1968546418 @default.
- W2591205007 cites W1978007644 @default.
- W2591205007 cites W1983817263 @default.
- W2591205007 cites W1988344569 @default.
- W2591205007 cites W2008179957 @default.
- W2591205007 cites W2008694725 @default.
- W2591205007 cites W2009104157 @default.
- W2591205007 cites W2012052869 @default.
- W2591205007 cites W2012657154 @default.
- W2591205007 cites W2014386275 @default.
- W2591205007 cites W2018979162 @default.
- W2591205007 cites W2022685475 @default.
- W2591205007 cites W2023346660 @default.
- W2591205007 cites W2027711639 @default.
- W2591205007 cites W2036087795 @default.
- W2591205007 cites W2036883318 @default.
- W2591205007 cites W2041580614 @default.
- W2591205007 cites W2041859079 @default.
- W2591205007 cites W2042220195 @default.
- W2591205007 cites W2047651020 @default.
- W2591205007 cites W2055718386 @default.
- W2591205007 cites W2056453128 @default.
- W2591205007 cites W2059842464 @default.
- W2591205007 cites W2064777491 @default.
- W2591205007 cites W2065219544 @default.
- W2591205007 cites W2065989874 @default.
- W2591205007 cites W2066449019 @default.
- W2591205007 cites W2066577158 @default.
- W2591205007 cites W2071302680 @default.
- W2591205007 cites W2072415695 @default.
- W2591205007 cites W2077868985 @default.
- W2591205007 cites W2078631078 @default.
- W2591205007 cites W2080483478 @default.
- W2591205007 cites W2086382273 @default.
- W2591205007 cites W2087424969 @default.
- W2591205007 cites W2087887181 @default.
- W2591205007 cites W2095832443 @default.
- W2591205007 cites W2104180403 @default.
- W2591205007 cites W2107769136 @default.
- W2591205007 cites W2110016310 @default.
- W2591205007 cites W2114373812 @default.
- W2591205007 cites W2118203371 @default.
- W2591205007 cites W2121990344 @default.
- W2591205007 cites W2123111622 @default.
- W2591205007 cites W2123487311 @default.
- W2591205007 cites W2132989754 @default.
- W2591205007 cites W2144147948 @default.
- W2591205007 cites W2146799928 @default.
- W2591205007 cites W2147001434 @default.
- W2591205007 cites W2151331945 @default.
- W2591205007 cites W2156026060 @default.
- W2591205007 cites W2156615197 @default.
- W2591205007 cites W2158987262 @default.
- W2591205007 cites W2186702087 @default.
- W2591205007 cites W2187369556 @default.
- W2591205007 cites W2272130679 @default.
- W2591205007 cites W2307809245 @default.
- W2591205007 cites W2317497785 @default.
- W2591205007 doi "https://doi.org/10.1016/j.jvolgeores.2017.02.015" @default.
- W2591205007 hasPublicationYear "2017" @default.
- W2591205007 type Work @default.
- W2591205007 sameAs 2591205007 @default.
- W2591205007 citedByCount "21" @default.
- W2591205007 countsByYear W25912050072017 @default.
- W2591205007 countsByYear W25912050072018 @default.
- W2591205007 countsByYear W25912050072019 @default.
- W2591205007 countsByYear W25912050072020 @default.
- W2591205007 countsByYear W25912050072021 @default.
- W2591205007 countsByYear W25912050072022 @default.
- W2591205007 countsByYear W25912050072023 @default.
- W2591205007 crossrefType "journal-article" @default.
- W2591205007 hasAuthorship W2591205007A5009117784 @default.
- W2591205007 hasAuthorship W2591205007A5037700263 @default.
- W2591205007 hasConcept C11413529 @default.
- W2591205007 hasConcept C120806208 @default.
- W2591205007 hasConcept C127313418 @default.
- W2591205007 hasConcept C13280743 @default.
- W2591205007 hasConcept C153294291 @default.
- W2591205007 hasConcept C154945302 @default.