Matches in SemOpenAlex for { <https://semopenalex.org/work/W2591278470> ?p ?o ?g. }
- W2591278470 abstract "The brain is a highly interconnected neurobiological system. Network-level characterization is thus largely performed to understand brain functioning. Brain activity can be captured through modalities like functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG). Brain networks are then estimated through pairwise relationships between brain regions using brain connectivity. Functional connectivity, which measures the degree of coactivation between two brain regions, is estimated from pairwise EEG (or fMRI) time series using a measure of synchronization like Pearson's correlation. However, all such measures suffer from the fact that they are continuous variables, with values often lying in the ambiguous range (say 0.3–0.7) wherein it is difficult to infer whether the two time series are actually synchronized or not. This makes the interpretation of findings challenging. Synchronization measures are also largely corrupted by noise. In this paper, a novel autocorrelation-based iterative synchronization (ABIS) technique is proposed, which provides binary synchronization values (0 = not synchronized, 1 = synchronized). It is entirely data driven with no assumptions, input parameters, or arbitrary choices. We demonstrate that ABIS resolves ambiguous synchronizations and provides reliable, robust, and neurobiologically meaningful binary synchronization values. ABIS also performs better than conventional synchronization on all these faculties. This technique has tremendous applications in brain functional connectivity analysis. Complex network modeling of the brain using graph theoretic techniques largely require binary connectivity matrices, which are often obtained by arbitrarily thresholding continuous connectivity matrices. Such practice usually sophisticates the analysis or yields unreliable results. The use of ABIS could entirely eliminate these issues since it provides binary connectivity matrices in a single step, without assumptions or arbitrary choices. Additionally, it resolves ambiguous connectivities to provide a set of sure-connections and sure no-connections, which improves the interpretability of connectivity results and enhances noise robustness (which plagues connectivity analysis). This study has potential applications in network modeling of the brain, and graph-theoretic analysis in general." @default.
- W2591278470 created "2017-03-03" @default.
- W2591278470 creator A5090174397 @default.
- W2591278470 date "2017-12-01" @default.
- W2591278470 modified "2023-09-27" @default.
- W2591278470 title "Binarized Brain Connectivity: A Novel Autocorrelation-Based Iterative Synchronization Technique" @default.
- W2591278470 cites W1549386224 @default.
- W2591278470 cites W1966523973 @default.
- W2591278470 cites W1983770772 @default.
- W2591278470 cites W1989738639 @default.
- W2591278470 cites W1995072318 @default.
- W2591278470 cites W1998855618 @default.
- W2591278470 cites W2003321679 @default.
- W2591278470 cites W2003922371 @default.
- W2591278470 cites W2004816127 @default.
- W2591278470 cites W2005411811 @default.
- W2591278470 cites W2007258384 @default.
- W2591278470 cites W2023196042 @default.
- W2591278470 cites W2024671524 @default.
- W2591278470 cites W2025799307 @default.
- W2591278470 cites W2041794423 @default.
- W2591278470 cites W2043699623 @default.
- W2591278470 cites W2044531734 @default.
- W2591278470 cites W2046433577 @default.
- W2591278470 cites W2075564806 @default.
- W2591278470 cites W2099593264 @default.
- W2591278470 cites W2118792597 @default.
- W2591278470 cites W2124973413 @default.
- W2591278470 cites W2151230415 @default.
- W2591278470 cites W2162010696 @default.
- W2591278470 cites W2167507110 @default.
- W2591278470 cites W2167822639 @default.
- W2591278470 cites W2171186828 @default.
- W2591278470 cites W2321552821 @default.
- W2591278470 cites W3045432724 @default.
- W2591278470 doi "https://doi.org/10.1109/tsipn.2017.2672400" @default.
- W2591278470 hasPublicationYear "2017" @default.
- W2591278470 type Work @default.
- W2591278470 sameAs 2591278470 @default.
- W2591278470 citedByCount "3" @default.
- W2591278470 countsByYear W25912784702019 @default.
- W2591278470 countsByYear W25912784702021 @default.
- W2591278470 countsByYear W25912784702022 @default.
- W2591278470 crossrefType "journal-article" @default.
- W2591278470 hasAuthorship W2591278470A5090174397 @default.
- W2591278470 hasConcept C105795698 @default.
- W2591278470 hasConcept C115961682 @default.
- W2591278470 hasConcept C120843803 @default.
- W2591278470 hasConcept C127162648 @default.
- W2591278470 hasConcept C153180895 @default.
- W2591278470 hasConcept C154945302 @default.
- W2591278470 hasConcept C15744967 @default.
- W2591278470 hasConcept C169760540 @default.
- W2591278470 hasConcept C184898388 @default.
- W2591278470 hasConcept C191178318 @default.
- W2591278470 hasConcept C2778562939 @default.
- W2591278470 hasConcept C2779226451 @default.
- W2591278470 hasConcept C3018011982 @default.
- W2591278470 hasConcept C31258907 @default.
- W2591278470 hasConcept C33923547 @default.
- W2591278470 hasConcept C41008148 @default.
- W2591278470 hasConcept C48372109 @default.
- W2591278470 hasConcept C522805319 @default.
- W2591278470 hasConcept C5297727 @default.
- W2591278470 hasConcept C94375191 @default.
- W2591278470 hasConcept C97820695 @default.
- W2591278470 hasConceptScore W2591278470C105795698 @default.
- W2591278470 hasConceptScore W2591278470C115961682 @default.
- W2591278470 hasConceptScore W2591278470C120843803 @default.
- W2591278470 hasConceptScore W2591278470C127162648 @default.
- W2591278470 hasConceptScore W2591278470C153180895 @default.
- W2591278470 hasConceptScore W2591278470C154945302 @default.
- W2591278470 hasConceptScore W2591278470C15744967 @default.
- W2591278470 hasConceptScore W2591278470C169760540 @default.
- W2591278470 hasConceptScore W2591278470C184898388 @default.
- W2591278470 hasConceptScore W2591278470C191178318 @default.
- W2591278470 hasConceptScore W2591278470C2778562939 @default.
- W2591278470 hasConceptScore W2591278470C2779226451 @default.
- W2591278470 hasConceptScore W2591278470C3018011982 @default.
- W2591278470 hasConceptScore W2591278470C31258907 @default.
- W2591278470 hasConceptScore W2591278470C33923547 @default.
- W2591278470 hasConceptScore W2591278470C41008148 @default.
- W2591278470 hasConceptScore W2591278470C48372109 @default.
- W2591278470 hasConceptScore W2591278470C522805319 @default.
- W2591278470 hasConceptScore W2591278470C5297727 @default.
- W2591278470 hasConceptScore W2591278470C94375191 @default.
- W2591278470 hasConceptScore W2591278470C97820695 @default.
- W2591278470 hasLocation W25912784701 @default.
- W2591278470 hasOpenAccess W2591278470 @default.
- W2591278470 hasPrimaryLocation W25912784701 @default.
- W2591278470 hasRelatedWork W1526101684 @default.
- W2591278470 hasRelatedWork W1541792919 @default.
- W2591278470 hasRelatedWork W1579815073 @default.
- W2591278470 hasRelatedWork W1999750253 @default.
- W2591278470 hasRelatedWork W2106950904 @default.
- W2591278470 hasRelatedWork W2330615146 @default.
- W2591278470 hasRelatedWork W2345560378 @default.
- W2591278470 hasRelatedWork W2474972560 @default.
- W2591278470 hasRelatedWork W2550427643 @default.
- W2591278470 hasRelatedWork W2614789439 @default.