Matches in SemOpenAlex for { <https://semopenalex.org/work/W2591330651> ?p ?o ?g. }
- W2591330651 endingPage "i22" @default.
- W2591330651 startingPage "i13" @default.
- W2591330651 abstract "Cellular Electron CryoTomography (CECT) enables 3D visualization of cellular organization at near-native state and in sub-molecular resolution, making it a powerful tool for analyzing structures of macromolecular complexes and their spatial organizations inside single cells. However, high degree of structural complexity together with practical imaging limitations makes the systematic de novo discovery of structures within cells challenging. It would likely require averaging and classifying millions of subtomograms potentially containing hundreds of highly heterogeneous structural classes. Although it is no longer difficult to acquire CECT data containing such amount of subtomograms due to advances in data acquisition automation, existing computational approaches have very limited scalability or discrimination ability, making them incapable of processing such amount of data.To complement existing approaches, in this article we propose a new approach for subdividing subtomograms into smaller but relatively homogeneous subsets. The structures in these subsets can then be separately recovered using existing computation intensive methods. Our approach is based on supervised structural feature extraction using deep learning, in combination with unsupervised clustering and reference-free classification. Our experiments show that, compared with existing unsupervised rotation invariant feature and pose-normalization based approaches, our new approach achieves significant improvements in both discrimination ability and scalability. More importantly, our new approach is able to discover new structural classes and recover structures that do not exist in training data.Source code freely available at http://www.cs.cmu.edu/∼mxu1/software .mxu1@cs.cmu.edu.Supplementary data are available at Bioinformatics online." @default.
- W2591330651 created "2017-03-03" @default.
- W2591330651 creator A5000022218 @default.
- W2591330651 creator A5000807861 @default.
- W2591330651 creator A5009547049 @default.
- W2591330651 creator A5015048287 @default.
- W2591330651 creator A5017697048 @default.
- W2591330651 creator A5021147939 @default.
- W2591330651 creator A5047878798 @default.
- W2591330651 date "2017-07-12" @default.
- W2591330651 modified "2023-10-15" @default.
- W2591330651 title "Deep learning-based subdivision approach for large scale macromolecules structure recovery from electron cryo tomograms" @default.
- W2591330651 cites W1152794317 @default.
- W2591330651 cites W1492556495 @default.
- W2591330651 cites W1798731098 @default.
- W2591330651 cites W1885115521 @default.
- W2591330651 cites W1964902292 @default.
- W2591330651 cites W1974978266 @default.
- W2591330651 cites W1985983127 @default.
- W2591330651 cites W1989585427 @default.
- W2591330651 cites W1993858653 @default.
- W2591330651 cites W1996074267 @default.
- W2591330651 cites W2003294049 @default.
- W2591330651 cites W2008857867 @default.
- W2591330651 cites W2014572457 @default.
- W2591330651 cites W2016367858 @default.
- W2591330651 cites W2017292564 @default.
- W2591330651 cites W2021009195 @default.
- W2591330651 cites W2021825077 @default.
- W2591330651 cites W2046542456 @default.
- W2591330651 cites W2049137651 @default.
- W2591330651 cites W2054520331 @default.
- W2591330651 cites W2061835758 @default.
- W2591330651 cites W2062757530 @default.
- W2591330651 cites W2069604928 @default.
- W2591330651 cites W2082842958 @default.
- W2591330651 cites W2091202339 @default.
- W2591330651 cites W2111222229 @default.
- W2591330651 cites W2112796928 @default.
- W2591330651 cites W2115251427 @default.
- W2591330651 cites W2117539524 @default.
- W2591330651 cites W2122151115 @default.
- W2591330651 cites W2123207418 @default.
- W2591330651 cites W2126919547 @default.
- W2591330651 cites W2130479394 @default.
- W2591330651 cites W2142161929 @default.
- W2591330651 cites W2161679604 @default.
- W2591330651 cites W2168857415 @default.
- W2591330651 cites W2169803474 @default.
- W2591330651 cites W2175730676 @default.
- W2591330651 cites W2252545462 @default.
- W2591330651 cites W2311730650 @default.
- W2591330651 cites W2530452081 @default.
- W2591330651 cites W2618381588 @default.
- W2591330651 cites W804987007 @default.
- W2591330651 doi "https://doi.org/10.1093/bioinformatics/btx230" @default.
- W2591330651 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5946875" @default.
- W2591330651 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28881965" @default.
- W2591330651 hasPublicationYear "2017" @default.
- W2591330651 type Work @default.
- W2591330651 sameAs 2591330651 @default.
- W2591330651 citedByCount "38" @default.
- W2591330651 countsByYear W25913306512018 @default.
- W2591330651 countsByYear W25913306512019 @default.
- W2591330651 countsByYear W25913306512020 @default.
- W2591330651 countsByYear W25913306512021 @default.
- W2591330651 countsByYear W25913306512022 @default.
- W2591330651 countsByYear W25913306512023 @default.
- W2591330651 crossrefType "journal-article" @default.
- W2591330651 hasAuthorship W2591330651A5000022218 @default.
- W2591330651 hasAuthorship W2591330651A5000807861 @default.
- W2591330651 hasAuthorship W2591330651A5009547049 @default.
- W2591330651 hasAuthorship W2591330651A5015048287 @default.
- W2591330651 hasAuthorship W2591330651A5017697048 @default.
- W2591330651 hasAuthorship W2591330651A5021147939 @default.
- W2591330651 hasAuthorship W2591330651A5047878798 @default.
- W2591330651 hasBestOaLocation W25913306511 @default.
- W2591330651 hasConcept C11413529 @default.
- W2591330651 hasConcept C115901376 @default.
- W2591330651 hasConcept C119857082 @default.
- W2591330651 hasConcept C124101348 @default.
- W2591330651 hasConcept C127413603 @default.
- W2591330651 hasConcept C136886441 @default.
- W2591330651 hasConcept C144024400 @default.
- W2591330651 hasConcept C153180895 @default.
- W2591330651 hasConcept C154945302 @default.
- W2591330651 hasConcept C19165224 @default.
- W2591330651 hasConcept C199360897 @default.
- W2591330651 hasConcept C2777904410 @default.
- W2591330651 hasConcept C36464697 @default.
- W2591330651 hasConcept C41008148 @default.
- W2591330651 hasConcept C45374587 @default.
- W2591330651 hasConcept C48044578 @default.
- W2591330651 hasConcept C73555534 @default.
- W2591330651 hasConcept C77088390 @default.
- W2591330651 hasConcept C78519656 @default.
- W2591330651 hasConceptScore W2591330651C11413529 @default.
- W2591330651 hasConceptScore W2591330651C115901376 @default.