Matches in SemOpenAlex for { <https://semopenalex.org/work/W2591801237> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W2591801237 abstract "This paper addresses the topic of deep neural networks (DNN). Recently, DNN has become a flagship in the fields of artificial intelligence. Deep learning has surpassed state-of-the-art results in many domains: image recognition, speech recognition, language modelling, parsing, information retrieval, speech synthesis, translation, autonomous cars, gaming, etc. DNN have the ability to discover and learn complex structure of very large data sets. Moreover, DNN have a great capability of generalization. More specifically, speech recognition with DNN is the topic of our work in this paper. We present an overview of different architectures and training procedures for DNN-based models. In the framework of transcription of broadcast news, our DNN-based system decreases the word error rate dramatically compared to a classical system." @default.
- W2591801237 created "2017-03-16" @default.
- W2591801237 creator A5033617615 @default.
- W2591801237 creator A5046546502 @default.
- W2591801237 creator A5073463405 @default.
- W2591801237 date "2017-04-13" @default.
- W2591801237 modified "2023-10-12" @default.
- W2591801237 title "New Paradigm in Speech Recognition: Deep Neural Networks" @default.
- W2591801237 cites W14941018 @default.
- W2591801237 cites W1524333225 @default.
- W2591801237 cites W163811496 @default.
- W2591801237 cites W1934041838 @default.
- W2591801237 cites W1985258458 @default.
- W2591801237 cites W2125838338 @default.
- W2591801237 cites W2146502635 @default.
- W2591801237 cites W2161742217 @default.
- W2591801237 cites W2342840547 @default.
- W2591801237 cites W2525778437 @default.
- W2591801237 cites W2533523411 @default.
- W2591801237 cites W2964121744 @default.
- W2591801237 hasPublicationYear "2017" @default.
- W2591801237 type Work @default.
- W2591801237 sameAs 2591801237 @default.
- W2591801237 citedByCount "5" @default.
- W2591801237 countsByYear W25918012372018 @default.
- W2591801237 countsByYear W25918012372021 @default.
- W2591801237 crossrefType "proceedings-article" @default.
- W2591801237 hasAuthorship W2591801237A5033617615 @default.
- W2591801237 hasAuthorship W2591801237A5046546502 @default.
- W2591801237 hasAuthorship W2591801237A5073463405 @default.
- W2591801237 hasBestOaLocation W25918012371 @default.
- W2591801237 hasConcept C154945302 @default.
- W2591801237 hasConcept C28490314 @default.
- W2591801237 hasConcept C2984842247 @default.
- W2591801237 hasConcept C41008148 @default.
- W2591801237 hasConcept C50644808 @default.
- W2591801237 hasConceptScore W2591801237C154945302 @default.
- W2591801237 hasConceptScore W2591801237C28490314 @default.
- W2591801237 hasConceptScore W2591801237C2984842247 @default.
- W2591801237 hasConceptScore W2591801237C41008148 @default.
- W2591801237 hasConceptScore W2591801237C50644808 @default.
- W2591801237 hasLocation W25918012371 @default.
- W2591801237 hasLocation W25918012372 @default.
- W2591801237 hasLocation W25918012373 @default.
- W2591801237 hasOpenAccess W2591801237 @default.
- W2591801237 hasPrimaryLocation W25918012371 @default.
- W2591801237 hasRelatedWork W1596801655 @default.
- W2591801237 hasRelatedWork W2130043461 @default.
- W2591801237 hasRelatedWork W2350741829 @default.
- W2591801237 hasRelatedWork W2358668433 @default.
- W2591801237 hasRelatedWork W2376932109 @default.
- W2591801237 hasRelatedWork W2382290278 @default.
- W2591801237 hasRelatedWork W2390279801 @default.
- W2591801237 hasRelatedWork W2748952813 @default.
- W2591801237 hasRelatedWork W2899084033 @default.
- W2591801237 hasRelatedWork W2530322880 @default.
- W2591801237 isParatext "false" @default.
- W2591801237 isRetracted "false" @default.
- W2591801237 magId "2591801237" @default.
- W2591801237 workType "article" @default.