Matches in SemOpenAlex for { <https://semopenalex.org/work/W2592006382> ?p ?o ?g. }
- W2592006382 endingPage "583" @default.
- W2592006382 startingPage "563" @default.
- W2592006382 abstract "The several-hundred-m-thick Eocene-Oligocene volcanic units in the Urmia-Dokhtar magmatic arc in northwestern Central Iran host stratabound and fault-controlled copper mineralization. The Kuh-Pang deposit (2.8 Mt at 1.65 wt% Cu, 0.52 g/t Au, 34 g/t Ag) has vein-style copper mineralization, with primary Cu-sulfides of chalcopyrite, bornite, chalcocite and digenite, and supergene Cu-sulfides of chalcocite, covellite, malachite and azurite, in a tectonic–hydrothermal breccia zone within rhyodacite and andesite flows. The mineralization is accompanied by a variety of alterations including silicic, carbonate, argillic and advanced argillic within a broad-scale propylitic halo. The main ore formation is related to hydrothermal breccias, and has a close association with silicic and argillic alterations. Sulfides formed during hydrothermal alteration, as indicated by: 1) the occurrence of disseminated sulfides in the groundmass of hydrothermally altered rocks, 2) the co-precipitation of sulfides and alteration minerals (e.g., kaolinite, alunite) in the cement of hydrothermal breccias, and 3) the occurrence of sulfides filling fissures and voids of hydrothermally altered rocks (vuggy quartz). The main mineralization stages include: (i) pre-ore stage with pyrite and arsenopyrite, (ii) main ore-stage with chalcopyrite, bornite, chalcocite I and digenite, and (iii) late-ore and supergene enrichment stage with chalcocite II and covellite. Electron microprobe analyses of pyrite show that As, Cu and Co are the most abundant minor elements. Back-scatter electron imaging of pyrite shows zoning features that closely reflect variations in the As/S ratio. High Cu concentration in pyrite is probably related to the presence of sub-micrometer particles and aggregates of chalcopyrite or other Cu-bearing sulfide minerals. Silver is preferentially enriched in supergene chalcocite and covellite. The mineral assemblage indicates a trend from intermediate to high sulfidation state, and arsenopyrite geothermometry defines temperatures for the pre-ore sulfides ranging from 250 to 370°C. The sulfur isotope composition of pre-ore pyrite and arsenopyrite shows a δ34S range of −1 to 3‰, indicating a magmatic sulfur-source. The copper sulfides have lower δ34S values (−9 to −3‰), indicating that the ore-forming fluids gradually became SO42−-enriched and relatively oxidized during Cu mineralization. The tectono-magmatic setting, mineral assemblage and hydrothermal alteration, including advanced argillic and silicic zones, suggest that the Kuh-Pang copper deposit is a high sulfidation epithermal deposit in a volcanic arc terrain." @default.
- W2592006382 created "2017-03-16" @default.
- W2592006382 creator A5008918797 @default.
- W2592006382 creator A5021368053 @default.
- W2592006382 creator A5035354621 @default.
- W2592006382 creator A5042379936 @default.
- W2592006382 creator A5082919794 @default.
- W2592006382 creator A5091305403 @default.
- W2592006382 date "2017-06-01" @default.
- W2592006382 modified "2023-10-14" @default.
- W2592006382 title "Sulfide chemistry and sulfur isotope characteristics of the Cenozoic volcanic-hosted Kuh-Pang copper deposit, Saveh county, northwestern central Iran" @default.
- W2592006382 cites W1531354667 @default.
- W2592006382 cites W1824767272 @default.
- W2592006382 cites W1965260190 @default.
- W2592006382 cites W1965391053 @default.
- W2592006382 cites W1965744338 @default.
- W2592006382 cites W1968193893 @default.
- W2592006382 cites W1969725957 @default.
- W2592006382 cites W1971710814 @default.
- W2592006382 cites W1976819346 @default.
- W2592006382 cites W1977639716 @default.
- W2592006382 cites W1978536119 @default.
- W2592006382 cites W1979407478 @default.
- W2592006382 cites W1984662315 @default.
- W2592006382 cites W1990633455 @default.
- W2592006382 cites W2001400080 @default.
- W2592006382 cites W2007816466 @default.
- W2592006382 cites W2009958649 @default.
- W2592006382 cites W2013358099 @default.
- W2592006382 cites W2013620610 @default.
- W2592006382 cites W2016102575 @default.
- W2592006382 cites W2019114317 @default.
- W2592006382 cites W2021428470 @default.
- W2592006382 cites W2023091835 @default.
- W2592006382 cites W2030315855 @default.
- W2592006382 cites W2039609237 @default.
- W2592006382 cites W2042221220 @default.
- W2592006382 cites W2042392811 @default.
- W2592006382 cites W2049216934 @default.
- W2592006382 cites W2064563658 @default.
- W2592006382 cites W2069637784 @default.
- W2592006382 cites W2076311214 @default.
- W2592006382 cites W2076373744 @default.
- W2592006382 cites W2079851347 @default.
- W2592006382 cites W2086668159 @default.
- W2592006382 cites W2087864969 @default.
- W2592006382 cites W2088096040 @default.
- W2592006382 cites W2089096123 @default.
- W2592006382 cites W2091312057 @default.
- W2592006382 cites W2092156812 @default.
- W2592006382 cites W2104837834 @default.
- W2592006382 cites W2107225420 @default.
- W2592006382 cites W2108740208 @default.
- W2592006382 cites W2108956388 @default.
- W2592006382 cites W2110613902 @default.
- W2592006382 cites W2110799222 @default.
- W2592006382 cites W2114955000 @default.
- W2592006382 cites W2127521842 @default.
- W2592006382 cites W2135452699 @default.
- W2592006382 cites W2136419158 @default.
- W2592006382 cites W2138167154 @default.
- W2592006382 cites W2143035384 @default.
- W2592006382 cites W2143047176 @default.
- W2592006382 cites W2148957284 @default.
- W2592006382 cites W2149288621 @default.
- W2592006382 cites W2149869889 @default.
- W2592006382 cites W2151889545 @default.
- W2592006382 cites W2152201494 @default.
- W2592006382 cites W2154295153 @default.
- W2592006382 cites W2162638162 @default.
- W2592006382 cites W2165399803 @default.
- W2592006382 cites W2167370874 @default.
- W2592006382 cites W2171050848 @default.
- W2592006382 cites W2209604122 @default.
- W2592006382 cites W2278700438 @default.
- W2592006382 cites W2322807320 @default.
- W2592006382 cites W2340214316 @default.
- W2592006382 cites W2535177471 @default.
- W2592006382 cites W2566476702 @default.
- W2592006382 cites W290895306 @default.
- W2592006382 doi "https://doi.org/10.1016/j.oregeorev.2017.03.001" @default.
- W2592006382 hasPublicationYear "2017" @default.
- W2592006382 type Work @default.
- W2592006382 sameAs 2592006382 @default.
- W2592006382 citedByCount "26" @default.
- W2592006382 countsByYear W25920063822018 @default.
- W2592006382 countsByYear W25920063822019 @default.
- W2592006382 countsByYear W25920063822020 @default.
- W2592006382 countsByYear W25920063822021 @default.
- W2592006382 countsByYear W25920063822022 @default.
- W2592006382 countsByYear W25920063822023 @default.
- W2592006382 crossrefType "journal-article" @default.
- W2592006382 hasAuthorship W2592006382A5008918797 @default.
- W2592006382 hasAuthorship W2592006382A5021368053 @default.
- W2592006382 hasAuthorship W2592006382A5035354621 @default.
- W2592006382 hasAuthorship W2592006382A5042379936 @default.
- W2592006382 hasAuthorship W2592006382A5082919794 @default.
- W2592006382 hasAuthorship W2592006382A5091305403 @default.