Matches in SemOpenAlex for { <https://semopenalex.org/work/W2592008241> ?p ?o ?g. }
- W2592008241 endingPage "282" @default.
- W2592008241 startingPage "282" @default.
- W2592008241 abstract "As one of the most widely used units in water cooling systems, the closed wet cooling towers (CWCTs) have two typical counter-flow constructions, in which the spray water flows from the top to the bottom, and the moist air and cooling water flow in the opposite direction vertically (parallel) or horizontally (cross), respectively. This study aims to present a simplified calculation method for conveniently and accurately analyzing the thermal performance of the two types of counter-flow CWCTs, viz. the parallel counter-flow CWCT (PCFCWCT) and the cross counter-flow CWCT (CCFCWCT). A simplified cooling capacity model that just includes two characteristic parameters is developed. The Levenberg–Marquardt method is employed to determine the model parameters by curve fitting of experimental data. Based on the proposed model, the predicted outlet temperatures of the process water are compared with the measurements of a PCFCWCT and a CCFCWCT, respectively, reported in the literature. The results indicate that the predicted values agree well with the experimental data in previous studies. The maximum absolute errors in predicting the process water outlet temperatures are 0.20 and 0.24 °C for the PCFCWCT and CCFCWCT, respectively. These results indicate that the simplified method is reliable for performance prediction of counter-flow CWCTs. Although the flow patterns of the two towers are different, the variation trends of thermal performance are similar to each other under various operating conditions. The inlet air wet-bulb temperature, inlet cooling water temperature, air flow rate, and cooling water flow rate are crucial for determining the cooling capacity of a counter-flow CWCT, while the cooling tower effectiveness is mainly determined by the flow rates of air and cooling water. Compared with the CCFCWCT, the PCFCWCT is much more applicable in a large-scale cooling water system, and the superiority would be amplified when the scale of water distribution system increases. Without multiple iterative calculations and extensive experimental data, the simplified method could be used to effectively analyze the thermal performance of counter-flow CWCTs in operation. It is useful for optimization operation of counter-flow CWCTs such that to improve the energy efficiency of the overall cooling water system." @default.
- W2592008241 created "2017-03-16" @default.
- W2592008241 creator A5011677170 @default.
- W2592008241 creator A5036726873 @default.
- W2592008241 creator A5044354277 @default.
- W2592008241 creator A5049017459 @default.
- W2592008241 creator A5049920455 @default.
- W2592008241 creator A5083220372 @default.
- W2592008241 date "2017-02-27" @default.
- W2592008241 modified "2023-09-29" @default.
- W2592008241 title "Performance Analyses of Counter-Flow Closed Wet Cooling Towers Based on a Simplified Calculation Method" @default.
- W2592008241 cites W1969634931 @default.
- W2592008241 cites W1970280292 @default.
- W2592008241 cites W1977288946 @default.
- W2592008241 cites W1992294212 @default.
- W2592008241 cites W1994443603 @default.
- W2592008241 cites W1997950522 @default.
- W2592008241 cites W2011867783 @default.
- W2592008241 cites W2018109308 @default.
- W2592008241 cites W2020286242 @default.
- W2592008241 cites W2026295034 @default.
- W2592008241 cites W2036344286 @default.
- W2592008241 cites W2040779797 @default.
- W2592008241 cites W2045312765 @default.
- W2592008241 cites W2049393231 @default.
- W2592008241 cites W2053970214 @default.
- W2592008241 cites W2056134507 @default.
- W2592008241 cites W2060577335 @default.
- W2592008241 cites W2062560547 @default.
- W2592008241 cites W2067086928 @default.
- W2592008241 cites W2073215449 @default.
- W2592008241 cites W2083108056 @default.
- W2592008241 cites W2090189502 @default.
- W2592008241 cites W2106174878 @default.
- W2592008241 cites W2111689585 @default.
- W2592008241 cites W2130819443 @default.
- W2592008241 cites W2132844062 @default.
- W2592008241 cites W2150689781 @default.
- W2592008241 cites W2166195662 @default.
- W2592008241 cites W2170596961 @default.
- W2592008241 cites W2288639117 @default.
- W2592008241 cites W2502532339 @default.
- W2592008241 doi "https://doi.org/10.3390/en10030282" @default.
- W2592008241 hasPublicationYear "2017" @default.
- W2592008241 type Work @default.
- W2592008241 sameAs 2592008241 @default.
- W2592008241 citedByCount "15" @default.
- W2592008241 countsByYear W25920082412017 @default.
- W2592008241 countsByYear W25920082412019 @default.
- W2592008241 countsByYear W25920082412020 @default.
- W2592008241 countsByYear W25920082412021 @default.
- W2592008241 countsByYear W25920082412022 @default.
- W2592008241 countsByYear W25920082412023 @default.
- W2592008241 crossrefType "journal-article" @default.
- W2592008241 hasAuthorship W2592008241A5011677170 @default.
- W2592008241 hasAuthorship W2592008241A5036726873 @default.
- W2592008241 hasAuthorship W2592008241A5044354277 @default.
- W2592008241 hasAuthorship W2592008241A5049017459 @default.
- W2592008241 hasAuthorship W2592008241A5049920455 @default.
- W2592008241 hasAuthorship W2592008241A5083220372 @default.
- W2592008241 hasBestOaLocation W25920082411 @default.
- W2592008241 hasConcept C121332964 @default.
- W2592008241 hasConcept C127413603 @default.
- W2592008241 hasConcept C151420433 @default.
- W2592008241 hasConcept C153294291 @default.
- W2592008241 hasConcept C159390177 @default.
- W2592008241 hasConcept C162569806 @default.
- W2592008241 hasConcept C172120300 @default.
- W2592008241 hasConcept C192562407 @default.
- W2592008241 hasConcept C201289731 @default.
- W2592008241 hasConcept C204530211 @default.
- W2592008241 hasConcept C2778547687 @default.
- W2592008241 hasConcept C2988574769 @default.
- W2592008241 hasConcept C38349280 @default.
- W2592008241 hasConcept C39432304 @default.
- W2592008241 hasConcept C57879066 @default.
- W2592008241 hasConcept C7694927 @default.
- W2592008241 hasConcept C78519656 @default.
- W2592008241 hasConcept C97355855 @default.
- W2592008241 hasConceptScore W2592008241C121332964 @default.
- W2592008241 hasConceptScore W2592008241C127413603 @default.
- W2592008241 hasConceptScore W2592008241C151420433 @default.
- W2592008241 hasConceptScore W2592008241C153294291 @default.
- W2592008241 hasConceptScore W2592008241C159390177 @default.
- W2592008241 hasConceptScore W2592008241C162569806 @default.
- W2592008241 hasConceptScore W2592008241C172120300 @default.
- W2592008241 hasConceptScore W2592008241C192562407 @default.
- W2592008241 hasConceptScore W2592008241C201289731 @default.
- W2592008241 hasConceptScore W2592008241C204530211 @default.
- W2592008241 hasConceptScore W2592008241C2778547687 @default.
- W2592008241 hasConceptScore W2592008241C2988574769 @default.
- W2592008241 hasConceptScore W2592008241C38349280 @default.
- W2592008241 hasConceptScore W2592008241C39432304 @default.
- W2592008241 hasConceptScore W2592008241C57879066 @default.
- W2592008241 hasConceptScore W2592008241C7694927 @default.
- W2592008241 hasConceptScore W2592008241C78519656 @default.
- W2592008241 hasConceptScore W2592008241C97355855 @default.
- W2592008241 hasFunder F4320321001 @default.