Matches in SemOpenAlex for { <https://semopenalex.org/work/W259203766> ?p ?o ?g. }
- W259203766 abstract "Summary In this study, the Trilateral Flash Cycle (TFC) and the Partially Evaporating Cycle (PEC) have been analyzed and compared to the Organic Rankine Cycle (ORC) for power production from low temperature heat sources. This study is a continuation of the work done in my project thesis fall 2013. The ORC is a well-known technology that is in use in several plants today. The TFC and PEC on the other hand are still in a state of technical development. The biggest challenge for the TFC and PEC is the required two-phase expansion. Lately, two-phase expanders with high efficiencies have been developed, which makes the TFC and PEC economically interesting. Currently, only a few studies on the TFC and PEC can be found, and most of them are theoretical considerations. All of these studies finds the TFC promising for low temperature heat sources, which was also the findings of my project thesis. The PEC is found to be promising for smaller systems where the working fluid pump efficiency is low. The TFCs main difference from the ORC is that the heating process ends at the boiling point of the working fluid, i.e. there is no evaporation and superheating. This leads to a better temperature match between the working fluid and the heat source, such that more heat can be transferred to the working fluid. Power is produced in a two-phase expander after the heating process. The cost pr. kWh for TFC systems have been estimated to be lower than for ORC systems due to the elimination of the evaporator, separator drum, gear box, lube oil system and the fact that simpler heat exchangers can be used. In the PEC, the working fluid is allowed to be partially evaporated during the heating process. This is done in an attempt to combine the advantages of the TFC and the ORC. The ORC, TFC and PEC have been simulated in a Microsoft Excel calculation tool, using Visual Basic for Applications. The simulations include detailed heat exchanger models to calculate heat transfer coefficients and pressure losses, and two-phase expander efficiency models for the TFC and PEC. The three cycles have been simulated and optimized for maximum net power production for three cases using different heat source temperatures. Air with a mass flow of 10 kg/s and temperatures of 100, 150 and 200 °C are used for Case I, Case II and Case III respectively. Water at 20 °C is used as the heat sink. The three cases are simulated with eight different working fluids, R123, R134a, R245fa, R1234ze(E), butane, pentane, isopentane and propane with maximum heat exchanger areas of 1000, 1500, 2000, 2500, 3000, 3500 and 4000 m2. Different performance parameters are calculated and used to compare the performance of the ORC, TFC and PEC, and the different working fluids. The results show that the TFC has the lowest power production for all cases, and the largest estimated system size. Both the total heat exchanger area and expander outlet volume flow are generally higher for the TFC systems, especially for the lower heat source temperature cases. For the 100 °C and 150 °C cases the power production for the TFC and ORC is in the same range. Since TFC systems are estimated to have a lower cost than ORC systems, they can be suitable for systems with heat sources in this range when system size is not a critical factor. The PEC does not show any advantage over the ORC for the cases analyzed here. This study shows less promising results for the TFC than my project thesis and other published studies. This is mainly due to the variable two-phase expander efficiency used here, and that none of the other studies considers pressure losses in the system or calculation of heat transfer coefficients for each working fluid. A scientific paper on the main results from the study before the simulation of the PEC and inclusion of the heat exchanger models is given in Appendix C. This paper has been submitted to the journal Energy. A scientific paper on the final results of the study is given in Appendix D. This paper has been submitted to the Gustav Lorentzen Conference." @default.
- W259203766 created "2016-06-24" @default.
- W259203766 creator A5012592325 @default.
- W259203766 date "2014-01-01" @default.
- W259203766 modified "2023-09-24" @default.
- W259203766 title "Analysis of the Trilateral Flash Cycle for Power Production from low Temperature Heat Sources" @default.
- W259203766 cites W1214580979 @default.
- W259203766 cites W1583809283 @default.
- W259203766 cites W1910886256 @default.
- W259203766 cites W1992690670 @default.
- W259203766 cites W2001327552 @default.
- W259203766 cites W2017634105 @default.
- W259203766 cites W2019227027 @default.
- W259203766 cites W2039399633 @default.
- W259203766 cites W2041870512 @default.
- W259203766 cites W2045516218 @default.
- W259203766 cites W2048164164 @default.
- W259203766 cites W2064028069 @default.
- W259203766 cites W2065386238 @default.
- W259203766 cites W2067160566 @default.
- W259203766 cites W2069778985 @default.
- W259203766 cites W2082830584 @default.
- W259203766 cites W2097011408 @default.
- W259203766 cites W2110069242 @default.
- W259203766 cites W2117781683 @default.
- W259203766 cites W2128234796 @default.
- W259203766 cites W2184237248 @default.
- W259203766 cites W2256105018 @default.
- W259203766 cites W2320886873 @default.
- W259203766 cites W2331103053 @default.
- W259203766 cites W2396317586 @default.
- W259203766 cites W2492845131 @default.
- W259203766 cites W2626345463 @default.
- W259203766 cites W2708028242 @default.
- W259203766 cites W2935931434 @default.
- W259203766 cites W44452311 @default.
- W259203766 hasPublicationYear "2014" @default.
- W259203766 type Work @default.
- W259203766 sameAs 259203766 @default.
- W259203766 citedByCount "2" @default.
- W259203766 countsByYear W2592037662017 @default.
- W259203766 crossrefType "dissertation" @default.
- W259203766 hasAuthorship W259203766A5012592325 @default.
- W259203766 hasConcept C101519877 @default.
- W259203766 hasConcept C107706546 @default.
- W259203766 hasConcept C121332964 @default.
- W259203766 hasConcept C127413603 @default.
- W259203766 hasConcept C142362112 @default.
- W259203766 hasConcept C153349607 @default.
- W259203766 hasConcept C161911898 @default.
- W259203766 hasConcept C163258240 @default.
- W259203766 hasConcept C184235594 @default.
- W259203766 hasConcept C18762648 @default.
- W259203766 hasConcept C188596812 @default.
- W259203766 hasConcept C21880701 @default.
- W259203766 hasConcept C2777526259 @default.
- W259203766 hasConcept C2779301550 @default.
- W259203766 hasConcept C37114186 @default.
- W259203766 hasConcept C39432304 @default.
- W259203766 hasConcept C42360764 @default.
- W259203766 hasConcept C44431628 @default.
- W259203766 hasConcept C61441594 @default.
- W259203766 hasConcept C78519656 @default.
- W259203766 hasConcept C97355855 @default.
- W259203766 hasConceptScore W259203766C101519877 @default.
- W259203766 hasConceptScore W259203766C107706546 @default.
- W259203766 hasConceptScore W259203766C121332964 @default.
- W259203766 hasConceptScore W259203766C127413603 @default.
- W259203766 hasConceptScore W259203766C142362112 @default.
- W259203766 hasConceptScore W259203766C153349607 @default.
- W259203766 hasConceptScore W259203766C161911898 @default.
- W259203766 hasConceptScore W259203766C163258240 @default.
- W259203766 hasConceptScore W259203766C184235594 @default.
- W259203766 hasConceptScore W259203766C18762648 @default.
- W259203766 hasConceptScore W259203766C188596812 @default.
- W259203766 hasConceptScore W259203766C21880701 @default.
- W259203766 hasConceptScore W259203766C2777526259 @default.
- W259203766 hasConceptScore W259203766C2779301550 @default.
- W259203766 hasConceptScore W259203766C37114186 @default.
- W259203766 hasConceptScore W259203766C39432304 @default.
- W259203766 hasConceptScore W259203766C42360764 @default.
- W259203766 hasConceptScore W259203766C44431628 @default.
- W259203766 hasConceptScore W259203766C61441594 @default.
- W259203766 hasConceptScore W259203766C78519656 @default.
- W259203766 hasConceptScore W259203766C97355855 @default.
- W259203766 hasLocation W2592037661 @default.
- W259203766 hasOpenAccess W259203766 @default.
- W259203766 hasPrimaryLocation W2592037661 @default.
- W259203766 hasRelatedWork W1043793141 @default.
- W259203766 hasRelatedWork W1509372319 @default.
- W259203766 hasRelatedWork W1974082874 @default.
- W259203766 hasRelatedWork W2063778507 @default.
- W259203766 hasRelatedWork W2077699130 @default.
- W259203766 hasRelatedWork W2120087156 @default.
- W259203766 hasRelatedWork W2365292806 @default.
- W259203766 hasRelatedWork W242912429 @default.
- W259203766 hasRelatedWork W280651709 @default.
- W259203766 hasRelatedWork W2901341306 @default.
- W259203766 hasRelatedWork W2919392510 @default.
- W259203766 hasRelatedWork W2969652623 @default.