Matches in SemOpenAlex for { <https://semopenalex.org/work/W2592040584> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2592040584 abstract "This paper presents the use of the Support Vector Regression (SVR) technique to forecast the reliability of a system. Future predicted values of system reliability are highly sensitive to the choice of SVR parameters and the type of kernel SVR function. The dataset of a turbocharged diesel engine system was used as a case study. The Normalize Root Mean Square Error (NRMSE) measure was used to evaluate the SVR model in predicting the reliability of the system. Many experimental attempts were done using the optimal SVR parameters and the proper kernel function. Results showed that Order 5 of the polynomial kernel outperformed both Gaussian and linear kernel functions in predicting the future reliability values with minimal NRMSE. Experimentally, choosing the proper parameters for the SVR is a hard process, and there are no guarantees that the good parameters and the best kernel function are used. Therefore, artificial intelligence must be used. A genetic algorithm (GA) was used as an AI search optimization method to optimize both the SVR parameters and the type of the kernel function by generating a GA-SVR model. The GA successfully optimized the SVR model to ensure accurate predictions. The adaptive GASVR model was used to overcome such problems as small size of the dataset, varying lifetimes of the system components, and odd behavior of the system because of external environmental causes. Results confirmed the efficiency of the adaptive model to predict precisely the reliability of the system, even with a small dataset." @default.
- W2592040584 created "2017-03-16" @default.
- W2592040584 creator A5050903344 @default.
- W2592040584 creator A5069024757 @default.
- W2592040584 creator A5088039090 @default.
- W2592040584 date "2017-01-01" @default.
- W2592040584 modified "2023-09-26" @default.
- W2592040584 title "A genetic algorithm to optimize the adaptive Support Vector Regression model for forecasting the reliability of diesel engine systems" @default.
- W2592040584 cites W1573726002 @default.
- W2592040584 cites W1614663146 @default.
- W2592040584 cites W1787544972 @default.
- W2592040584 cites W2037800427 @default.
- W2592040584 cites W2065135339 @default.
- W2592040584 cites W2092673937 @default.
- W2592040584 cites W2123737232 @default.
- W2592040584 cites W2127055218 @default.
- W2592040584 cites W2281100045 @default.
- W2592040584 cites W1581893278 @default.
- W2592040584 cites W2184862478 @default.
- W2592040584 doi "https://doi.org/10.1109/ccwc.2017.7868462" @default.
- W2592040584 hasPublicationYear "2017" @default.
- W2592040584 type Work @default.
- W2592040584 sameAs 2592040584 @default.
- W2592040584 citedByCount "1" @default.
- W2592040584 countsByYear W25920405842021 @default.
- W2592040584 crossrefType "proceedings-article" @default.
- W2592040584 hasAuthorship W2592040584A5050903344 @default.
- W2592040584 hasAuthorship W2592040584A5069024757 @default.
- W2592040584 hasAuthorship W2592040584A5088039090 @default.
- W2592040584 hasConcept C11413529 @default.
- W2592040584 hasConcept C114614502 @default.
- W2592040584 hasConcept C119857082 @default.
- W2592040584 hasConcept C121332964 @default.
- W2592040584 hasConcept C122280245 @default.
- W2592040584 hasConcept C12267149 @default.
- W2592040584 hasConcept C126255220 @default.
- W2592040584 hasConcept C127413603 @default.
- W2592040584 hasConcept C154945302 @default.
- W2592040584 hasConcept C160446489 @default.
- W2592040584 hasConcept C163258240 @default.
- W2592040584 hasConcept C163716315 @default.
- W2592040584 hasConcept C171146098 @default.
- W2592040584 hasConcept C2780804531 @default.
- W2592040584 hasConcept C33923547 @default.
- W2592040584 hasConcept C41008148 @default.
- W2592040584 hasConcept C43214815 @default.
- W2592040584 hasConcept C62520636 @default.
- W2592040584 hasConcept C7218915 @default.
- W2592040584 hasConcept C74193536 @default.
- W2592040584 hasConcept C8880873 @default.
- W2592040584 hasConceptScore W2592040584C11413529 @default.
- W2592040584 hasConceptScore W2592040584C114614502 @default.
- W2592040584 hasConceptScore W2592040584C119857082 @default.
- W2592040584 hasConceptScore W2592040584C121332964 @default.
- W2592040584 hasConceptScore W2592040584C122280245 @default.
- W2592040584 hasConceptScore W2592040584C12267149 @default.
- W2592040584 hasConceptScore W2592040584C126255220 @default.
- W2592040584 hasConceptScore W2592040584C127413603 @default.
- W2592040584 hasConceptScore W2592040584C154945302 @default.
- W2592040584 hasConceptScore W2592040584C160446489 @default.
- W2592040584 hasConceptScore W2592040584C163258240 @default.
- W2592040584 hasConceptScore W2592040584C163716315 @default.
- W2592040584 hasConceptScore W2592040584C171146098 @default.
- W2592040584 hasConceptScore W2592040584C2780804531 @default.
- W2592040584 hasConceptScore W2592040584C33923547 @default.
- W2592040584 hasConceptScore W2592040584C41008148 @default.
- W2592040584 hasConceptScore W2592040584C43214815 @default.
- W2592040584 hasConceptScore W2592040584C62520636 @default.
- W2592040584 hasConceptScore W2592040584C7218915 @default.
- W2592040584 hasConceptScore W2592040584C74193536 @default.
- W2592040584 hasConceptScore W2592040584C8880873 @default.
- W2592040584 hasLocation W25920405841 @default.
- W2592040584 hasOpenAccess W2592040584 @default.
- W2592040584 hasPrimaryLocation W25920405841 @default.
- W2592040584 hasRelatedWork W1484726263 @default.
- W2592040584 hasRelatedWork W1566738621 @default.
- W2592040584 hasRelatedWork W1976720450 @default.
- W2592040584 hasRelatedWork W2000718048 @default.
- W2592040584 hasRelatedWork W2043829975 @default.
- W2592040584 hasRelatedWork W2067847508 @default.
- W2592040584 hasRelatedWork W2079662496 @default.
- W2592040584 hasRelatedWork W2101600774 @default.
- W2592040584 hasRelatedWork W2125804223 @default.
- W2592040584 hasRelatedWork W2151203917 @default.
- W2592040584 hasRelatedWork W2359038795 @default.
- W2592040584 hasRelatedWork W2374927229 @default.
- W2592040584 hasRelatedWork W2388738969 @default.
- W2592040584 hasRelatedWork W2746076170 @default.
- W2592040584 hasRelatedWork W2756263260 @default.
- W2592040584 hasRelatedWork W2889957900 @default.
- W2592040584 hasRelatedWork W2920896351 @default.
- W2592040584 hasRelatedWork W2947371868 @default.
- W2592040584 hasRelatedWork W3022789660 @default.
- W2592040584 hasRelatedWork W3124695286 @default.
- W2592040584 isParatext "false" @default.
- W2592040584 isRetracted "false" @default.
- W2592040584 magId "2592040584" @default.
- W2592040584 workType "article" @default.