Matches in SemOpenAlex for { <https://semopenalex.org/work/W2592139278> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2592139278 abstract "Curriculum improvement and graduate attributes assessments have become recently a serious issue for many Canadian engineering schools. Collecting assessment data concerning graduate attributes and the students’ learning is an important step of curriculum evaluation and the continuous improvement process. To be successful, this improvement process needs appropriate methods and tools for data analysis.Recent developments in the field of Psychometrics and Educational Data Mining (EDM) provide multidimensional item response models able to take into account student and curriculum attributes as parameters. The primary intent of these new models is to predict student successes based on students past performance and the assessment map underlying the tests they completed.We demonstrate in this paper that these models can also be used to analyze the assessment map. In the psychometric and Educational Data mining literature, assessment maps are usually represented as a parameter that associates items to competencies in a matrix called Q-matrix. This concept draws its origins from the Rule-Space Model that was introduced in the eighties to statistically classify student item responses into a set of ideal response patterns associated to different cognitive skills.A method based on the Additive Factor Model has been successfully implemented to analyse the Q-matrix corresponding to the assessment maps used in the graduate assessment process. The results of 17 volunteering anonymous students completing 36 courses at the Université de Moncton between winter 2010 and fall 2015 semesters was analysed with our method. Results obtained provided interesting and useful information regarding the assessment map and the overall assessment process that are presented and discussed in this paper." @default.
- W2592139278 created "2017-03-16" @default.
- W2592139278 creator A5023218113 @default.
- W2592139278 creator A5058375440 @default.
- W2592139278 creator A5068942495 @default.
- W2592139278 date "2017-01-28" @default.
- W2592139278 modified "2023-09-27" @default.
- W2592139278 title "EDUCATIONAL DATA MINING APPROACH FOR ENGINEERING GRADUATE ATTRIBUTES ANALYSIS" @default.
- W2592139278 doi "https://doi.org/10.24908/pceea.v0i0.6456" @default.
- W2592139278 hasPublicationYear "2017" @default.
- W2592139278 type Work @default.
- W2592139278 sameAs 2592139278 @default.
- W2592139278 citedByCount "3" @default.
- W2592139278 countsByYear W25921392782019 @default.
- W2592139278 countsByYear W25921392782020 @default.
- W2592139278 crossrefType "journal-article" @default.
- W2592139278 hasAuthorship W2592139278A5023218113 @default.
- W2592139278 hasAuthorship W2592139278A5058375440 @default.
- W2592139278 hasAuthorship W2592139278A5068942495 @default.
- W2592139278 hasBestOaLocation W25921392781 @default.
- W2592139278 hasConcept C111919701 @default.
- W2592139278 hasConcept C124101348 @default.
- W2592139278 hasConcept C145420912 @default.
- W2592139278 hasConcept C154945302 @default.
- W2592139278 hasConcept C15744967 @default.
- W2592139278 hasConcept C177264268 @default.
- W2592139278 hasConcept C19417346 @default.
- W2592139278 hasConcept C199360897 @default.
- W2592139278 hasConcept C200287777 @default.
- W2592139278 hasConcept C202444582 @default.
- W2592139278 hasConcept C2522767166 @default.
- W2592139278 hasConcept C2777598771 @default.
- W2592139278 hasConcept C33923547 @default.
- W2592139278 hasConcept C41008148 @default.
- W2592139278 hasConcept C47177190 @default.
- W2592139278 hasConcept C9652623 @default.
- W2592139278 hasConcept C98045186 @default.
- W2592139278 hasConceptScore W2592139278C111919701 @default.
- W2592139278 hasConceptScore W2592139278C124101348 @default.
- W2592139278 hasConceptScore W2592139278C145420912 @default.
- W2592139278 hasConceptScore W2592139278C154945302 @default.
- W2592139278 hasConceptScore W2592139278C15744967 @default.
- W2592139278 hasConceptScore W2592139278C177264268 @default.
- W2592139278 hasConceptScore W2592139278C19417346 @default.
- W2592139278 hasConceptScore W2592139278C199360897 @default.
- W2592139278 hasConceptScore W2592139278C200287777 @default.
- W2592139278 hasConceptScore W2592139278C202444582 @default.
- W2592139278 hasConceptScore W2592139278C2522767166 @default.
- W2592139278 hasConceptScore W2592139278C2777598771 @default.
- W2592139278 hasConceptScore W2592139278C33923547 @default.
- W2592139278 hasConceptScore W2592139278C41008148 @default.
- W2592139278 hasConceptScore W2592139278C47177190 @default.
- W2592139278 hasConceptScore W2592139278C9652623 @default.
- W2592139278 hasConceptScore W2592139278C98045186 @default.
- W2592139278 hasLocation W25921392781 @default.
- W2592139278 hasLocation W25921392782 @default.
- W2592139278 hasOpenAccess W2592139278 @default.
- W2592139278 hasPrimaryLocation W25921392781 @default.
- W2592139278 hasRelatedWork W2364375860 @default.
- W2592139278 hasRelatedWork W2546779449 @default.
- W2592139278 hasRelatedWork W2899084033 @default.
- W2592139278 hasRelatedWork W3013659001 @default.
- W2592139278 hasRelatedWork W3126338254 @default.
- W2592139278 hasRelatedWork W4210461813 @default.
- W2592139278 hasRelatedWork W4281559401 @default.
- W2592139278 hasRelatedWork W4308093190 @default.
- W2592139278 hasRelatedWork W4318428506 @default.
- W2592139278 hasRelatedWork W2411362804 @default.
- W2592139278 isParatext "false" @default.
- W2592139278 isRetracted "false" @default.
- W2592139278 magId "2592139278" @default.
- W2592139278 workType "article" @default.