Matches in SemOpenAlex for { <https://semopenalex.org/work/W2592166078> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2592166078 abstract "Current models of Geophysical Fluid Dynamics (GFD) lack the capability to quantify computationally induced errors. To address this issue, we present a new approach for numerical uncertainty quantification in GFD models: goal error estimation through learning. We estimate the error in important physical quantities – so-called goals – as a weighted sum of local model errors. Our algorithm divides this goal error estimation into three phases. In phase one, we select a mathematical description of local model errors, either a deterministic functional of the solution or a stochastic process. In phase two, a learning algorithm adapts the selected mathematical description to the numerical experiment under consideration by determining the free parameters of the mathematical description. The learning algorithm analyzes a series of short numerical simulations on different resolutions. In phase three, goal errors are estimated using the learned parameters of the local error description. The deterministic description produces a goal error estimate that can be used to correct the original goal approximation. The stochastic description produces a goal error estimate ensemble that can be used to construct error bounds for the original goal approximation. The goal error ensemble is generated from a single model forward evaluation. The weights that are required for both approaches are the sensitivities of the goal with respect to local model errors. These sensitivities are calculated automatically with an Algorithmic Differentiation tool applied to the model’s source code. We evaluate both algorithms within ICOSWM, a numerical model for the shallow water equations on the sphere, and implement an Algorithmic Differentiation framework that calculates any required goal sensitivity. With our deterministic approach, we are the first to estimate time-dependent goal approximation errors for the spherical shallow water equations. With our stochastic approach, we are the first to estimate an ensemble of goal approximation errors from only one forward solution of the model. We combine our local error learning algorithm with stochastic physics and initial condition ensemble techniques and compare the results of both forward ensembles and our a posteriori ensemble. For our test cases, we see that an a posteriori ensemble – derived from a single model solution – delivers comparable results as a stochastic physics ensemble that requires multiple model solutions. We suggest the extension of our method to total model error and discuss the general nature of local model errors. The algorithm proposed in this thesis bridges the gap between deterministic numerical methods and stochastic ensemble methods. It is generally applicable, easy to use, and simple compared to classical goal error estimation methods. Goal error estimation through learning is a first step towards automatic error bars for GFD models." @default.
- W2592166078 created "2017-03-16" @default.
- W2592166078 creator A5064635990 @default.
- W2592166078 date "2011-01-01" @default.
- W2592166078 modified "2023-09-23" @default.
- W2592166078 title "Error estimation in geophysical fluid dynamics through learning" @default.
- W2592166078 cites W117463898 @default.
- W2592166078 cites W1485430121 @default.
- W2592166078 cites W150071318 @default.
- W2592166078 cites W1519403971 @default.
- W2592166078 cites W1575829081 @default.
- W2592166078 cites W1816963106 @default.
- W2592166078 cites W1975087281 @default.
- W2592166078 cites W1981485660 @default.
- W2592166078 cites W1985126321 @default.
- W2592166078 cites W1987865080 @default.
- W2592166078 cites W1995404822 @default.
- W2592166078 cites W2003730309 @default.
- W2592166078 cites W2009447971 @default.
- W2592166078 cites W2014957836 @default.
- W2592166078 cites W2024743096 @default.
- W2592166078 cites W2030411806 @default.
- W2592166078 cites W2035144773 @default.
- W2592166078 cites W2037979212 @default.
- W2592166078 cites W2053478228 @default.
- W2592166078 cites W2059477441 @default.
- W2592166078 cites W2071681524 @default.
- W2592166078 cites W2079247474 @default.
- W2592166078 cites W2095270108 @default.
- W2592166078 cites W2104757331 @default.
- W2592166078 cites W2109005173 @default.
- W2592166078 cites W2111288282 @default.
- W2592166078 cites W2111976683 @default.
- W2592166078 cites W2122602456 @default.
- W2592166078 cites W2124138287 @default.
- W2592166078 cites W2124453044 @default.
- W2592166078 cites W2131043676 @default.
- W2592166078 cites W2133147107 @default.
- W2592166078 cites W2144668858 @default.
- W2592166078 cites W2146046435 @default.
- W2592166078 cites W2162474854 @default.
- W2592166078 cites W2174784159 @default.
- W2592166078 cites W2323143762 @default.
- W2592166078 cites W3010932768 @default.
- W2592166078 cites W3107806722 @default.
- W2592166078 cites W54927611 @default.
- W2592166078 doi "https://doi.org/10.17617/2.2389949" @default.
- W2592166078 hasPublicationYear "2011" @default.
- W2592166078 type Work @default.
- W2592166078 sameAs 2592166078 @default.
- W2592166078 citedByCount "0" @default.
- W2592166078 crossrefType "journal-article" @default.
- W2592166078 hasAuthorship W2592166078A5064635990 @default.
- W2592166078 hasConcept C111919701 @default.
- W2592166078 hasConcept C11413529 @default.
- W2592166078 hasConcept C119857082 @default.
- W2592166078 hasConcept C126255220 @default.
- W2592166078 hasConcept C179024874 @default.
- W2592166078 hasConcept C28826006 @default.
- W2592166078 hasConcept C33923547 @default.
- W2592166078 hasConcept C41008148 @default.
- W2592166078 hasConcept C98045186 @default.
- W2592166078 hasConceptScore W2592166078C111919701 @default.
- W2592166078 hasConceptScore W2592166078C11413529 @default.
- W2592166078 hasConceptScore W2592166078C119857082 @default.
- W2592166078 hasConceptScore W2592166078C126255220 @default.
- W2592166078 hasConceptScore W2592166078C179024874 @default.
- W2592166078 hasConceptScore W2592166078C28826006 @default.
- W2592166078 hasConceptScore W2592166078C33923547 @default.
- W2592166078 hasConceptScore W2592166078C41008148 @default.
- W2592166078 hasConceptScore W2592166078C98045186 @default.
- W2592166078 hasLocation W25921660781 @default.
- W2592166078 hasOpenAccess W2592166078 @default.
- W2592166078 hasPrimaryLocation W25921660781 @default.
- W2592166078 hasRelatedWork W1278301499 @default.
- W2592166078 hasRelatedWork W1494540249 @default.
- W2592166078 hasRelatedWork W1554443300 @default.
- W2592166078 hasRelatedWork W1977130752 @default.
- W2592166078 hasRelatedWork W2031544930 @default.
- W2592166078 hasRelatedWork W2059951022 @default.
- W2592166078 hasRelatedWork W2084008540 @default.
- W2592166078 hasRelatedWork W2257919285 @default.
- W2592166078 hasRelatedWork W2282924803 @default.
- W2592166078 hasRelatedWork W2331806853 @default.
- W2592166078 hasRelatedWork W2604697957 @default.
- W2592166078 hasRelatedWork W2620006744 @default.
- W2592166078 hasRelatedWork W2775145641 @default.
- W2592166078 hasRelatedWork W2790678614 @default.
- W2592166078 hasRelatedWork W2886019046 @default.
- W2592166078 hasRelatedWork W2976033080 @default.
- W2592166078 hasRelatedWork W3104562023 @default.
- W2592166078 hasRelatedWork W3113354447 @default.
- W2592166078 hasRelatedWork W3139927507 @default.
- W2592166078 hasRelatedWork W3167342305 @default.
- W2592166078 isParatext "false" @default.
- W2592166078 isRetracted "false" @default.
- W2592166078 magId "2592166078" @default.
- W2592166078 workType "article" @default.