Matches in SemOpenAlex for { <https://semopenalex.org/work/W2592182647> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2592182647 abstract "In spectral computed tomography (spectral CT), the additional information about the energy dependence ofattenuation coefficients can be exploited to generate material selective images. These images have found applicationsin various areas such as artifact reduction, quantitative imaging or clinical diagnosis. However, significantnoise amplification on material decomposed images remains a fundamental problem of spectral CT. Most spectralCT algorithms separate the process of material decomposition and image reconstruction. Separating thesesteps is suboptimal because the full statistical information contained in the spectral tomographic measurementscannot be exploited. Statistical iterative reconstruction (SIR) techniques provide an alternative, mathematicallyelegant approach to obtaining material selective images with improved tradeoffs between noise and resolution.Furthermore, image reconstruction and material decomposition can be performed jointly. This is accomplishedby a forward model which directly connects the (expected) spectral projection measurements and the materialselective images. To obtain this forward model, detailed knowledge of the different photon energy spectra andthe detector response was assumed in previous work. However, accurately determining the spectrum is oftendifficult in practice. In this work, a new algorithm for statistical iterative material decomposition is presented.It uses a semi-empirical forward model which relies on simple calibration measurements. Furthermore, an efficient optimization algorithm based on separable surrogate functions is employed. This partially negates oneof the major shortcomings of SIR, namely high computational cost and long reconstruction times. Numericalsimulations and real experiments show strongly improved image quality and reduced statistical bias comparedto projection-based material decomposition." @default.
- W2592182647 created "2017-03-16" @default.
- W2592182647 creator A5000926077 @default.
- W2592182647 creator A5041872573 @default.
- W2592182647 creator A5046361495 @default.
- W2592182647 creator A5050134612 @default.
- W2592182647 creator A5075169635 @default.
- W2592182647 date "2017-03-09" @default.
- W2592182647 modified "2023-09-23" @default.
- W2592182647 title "Statistical iterative material image reconstruction for spectral CT using a semi-empirical forward model" @default.
- W2592182647 doi "https://doi.org/10.1117/12.2252325" @default.
- W2592182647 hasPublicationYear "2017" @default.
- W2592182647 type Work @default.
- W2592182647 sameAs 2592182647 @default.
- W2592182647 citedByCount "0" @default.
- W2592182647 crossrefType "proceedings-article" @default.
- W2592182647 hasAuthorship W2592182647A5000926077 @default.
- W2592182647 hasAuthorship W2592182647A5041872573 @default.
- W2592182647 hasAuthorship W2592182647A5046361495 @default.
- W2592182647 hasAuthorship W2592182647A5050134612 @default.
- W2592182647 hasAuthorship W2592182647A5075169635 @default.
- W2592182647 hasConcept C105795698 @default.
- W2592182647 hasConcept C11413529 @default.
- W2592182647 hasConcept C115961682 @default.
- W2592182647 hasConcept C141379421 @default.
- W2592182647 hasConcept C154945302 @default.
- W2592182647 hasConcept C186370098 @default.
- W2592182647 hasConcept C33923547 @default.
- W2592182647 hasConcept C41008148 @default.
- W2592182647 hasConcept C55020928 @default.
- W2592182647 hasConcept C57493831 @default.
- W2592182647 hasConcept C76155785 @default.
- W2592182647 hasConcept C94915269 @default.
- W2592182647 hasConcept C97742081 @default.
- W2592182647 hasConcept C99498987 @default.
- W2592182647 hasConceptScore W2592182647C105795698 @default.
- W2592182647 hasConceptScore W2592182647C11413529 @default.
- W2592182647 hasConceptScore W2592182647C115961682 @default.
- W2592182647 hasConceptScore W2592182647C141379421 @default.
- W2592182647 hasConceptScore W2592182647C154945302 @default.
- W2592182647 hasConceptScore W2592182647C186370098 @default.
- W2592182647 hasConceptScore W2592182647C33923547 @default.
- W2592182647 hasConceptScore W2592182647C41008148 @default.
- W2592182647 hasConceptScore W2592182647C55020928 @default.
- W2592182647 hasConceptScore W2592182647C57493831 @default.
- W2592182647 hasConceptScore W2592182647C76155785 @default.
- W2592182647 hasConceptScore W2592182647C94915269 @default.
- W2592182647 hasConceptScore W2592182647C97742081 @default.
- W2592182647 hasConceptScore W2592182647C99498987 @default.
- W2592182647 hasLocation W25921826471 @default.
- W2592182647 hasOpenAccess W2592182647 @default.
- W2592182647 hasPrimaryLocation W25921826471 @default.
- W2592182647 hasRelatedWork W1978833127 @default.
- W2592182647 hasRelatedWork W2007516869 @default.
- W2592182647 hasRelatedWork W2043829445 @default.
- W2592182647 hasRelatedWork W2071680441 @default.
- W2592182647 hasRelatedWork W2080495539 @default.
- W2592182647 hasRelatedWork W2087049473 @default.
- W2592182647 hasRelatedWork W2134758966 @default.
- W2592182647 hasRelatedWork W2296723128 @default.
- W2592182647 hasRelatedWork W2311697298 @default.
- W2592182647 hasRelatedWork W2529027070 @default.
- W2592182647 hasRelatedWork W2542551538 @default.
- W2592182647 hasRelatedWork W2626712953 @default.
- W2592182647 hasRelatedWork W2765441968 @default.
- W2592182647 hasRelatedWork W2796049279 @default.
- W2592182647 hasRelatedWork W2801196564 @default.
- W2592182647 hasRelatedWork W3038014657 @default.
- W2592182647 hasRelatedWork W3094836612 @default.
- W2592182647 hasRelatedWork W2105578184 @default.
- W2592182647 hasRelatedWork W2140105699 @default.
- W2592182647 hasRelatedWork W2948751498 @default.
- W2592182647 isParatext "false" @default.
- W2592182647 isRetracted "false" @default.
- W2592182647 magId "2592182647" @default.
- W2592182647 workType "article" @default.