Matches in SemOpenAlex for { <https://semopenalex.org/work/W2592244930> ?p ?o ?g. }
- W2592244930 abstract "Data from 16S ribosomal RNA (rRNA) amplicon sequencing present challenges to ecological and statistical interpretation. In particular, library sizes often vary over several ranges of magnitude, and the data contains many zeros. Although we are typically interested in comparing relative abundance of taxa in the ecosystem of two or more groups, we can only measure the taxon relative abundance in specimens obtained from the ecosystems. Because the comparison of taxon relative abundance in the specimen is not equivalent to the comparison of taxon relative abundance in the ecosystems, this presents a special challenge. Second, because the relative abundance of taxa in the specimen (as well as in the ecosystem) sum to 1, these are compositional data. Because the compositional data are constrained by the simplex (sum to 1) and are not unconstrained in the Euclidean space, many standard methods of analysis are not applicable. Here, we evaluate how these challenges impact the performance of existing normalization methods and differential abundance analyses. Effects on normalization: Most normalization methods enable successful clustering of samples according to biological origin when the groups differ substantially in their overall microbial composition. Rarefying more clearly clusters samples according to biological origin than other normalization techniques do for ordination metrics based on presence or absence. Alternate normalization measures are potentially vulnerable to artifacts due to library size. Effects on differential abundance testing: We build on a previous work to evaluate seven proposed statistical methods using rarefied as well as raw data. Our simulation studies suggest that the false discovery rates of many differential abundance-testing methods are not increased by rarefying itself, although of course rarefying results in a loss of sensitivity due to elimination of a portion of available data. For groups with large (~10×) differences in the average library size, rarefying lowers the false discovery rate. DESeq2, without addition of a constant, increased sensitivity on smaller datasets (<20 samples per group) but tends towards a higher false discovery rate with more samples, very uneven (~10×) library sizes, and/or compositional effects. For drawing inferences regarding taxon abundance in the ecosystem, analysis of composition of microbiomes (ANCOM) is not only very sensitive (for >20 samples per group) but also critically the only method tested that has a good control of false discovery rate. These findings guide which normalization and differential abundance techniques to use based on the data characteristics of a given study." @default.
- W2592244930 created "2017-03-16" @default.
- W2592244930 creator A5004718159 @default.
- W2592244930 creator A5019601645 @default.
- W2592244930 creator A5019670413 @default.
- W2592244930 creator A5024143614 @default.
- W2592244930 creator A5026650969 @default.
- W2592244930 creator A5033881627 @default.
- W2592244930 creator A5037261939 @default.
- W2592244930 creator A5061546513 @default.
- W2592244930 creator A5065251044 @default.
- W2592244930 creator A5066967353 @default.
- W2592244930 creator A5086938254 @default.
- W2592244930 creator A5089088705 @default.
- W2592244930 date "2017-03-03" @default.
- W2592244930 modified "2023-10-18" @default.
- W2592244930 title "Normalization and microbial differential abundance strategies depend upon data characteristics" @default.
- W2592244930 cites W1523266228 @default.
- W2592244930 cites W1966374579 @default.
- W2592244930 cites W1971415551 @default.
- W2592244930 cites W1972463480 @default.
- W2592244930 cites W1973628995 @default.
- W2592244930 cites W1974809348 @default.
- W2592244930 cites W1979579723 @default.
- W2592244930 cites W1983843502 @default.
- W2592244930 cites W1989889539 @default.
- W2592244930 cites W1993046026 @default.
- W2592244930 cites W1993399595 @default.
- W2592244930 cites W1995070233 @default.
- W2592244930 cites W1995393174 @default.
- W2592244930 cites W1999597013 @default.
- W2592244930 cites W2004014148 @default.
- W2592244930 cites W2012445035 @default.
- W2592244930 cites W2021880506 @default.
- W2592244930 cites W2026006003 @default.
- W2592244930 cites W2034189943 @default.
- W2592244930 cites W2053801811 @default.
- W2592244930 cites W2055615060 @default.
- W2592244930 cites W2056279562 @default.
- W2592244930 cites W2066011810 @default.
- W2592244930 cites W2066402881 @default.
- W2592244930 cites W2070494252 @default.
- W2592244930 cites W2072970694 @default.
- W2592244930 cites W2074414424 @default.
- W2592244930 cites W2078112764 @default.
- W2592244930 cites W2080283023 @default.
- W2592244930 cites W2085284704 @default.
- W2592244930 cites W2090187219 @default.
- W2592244930 cites W2092133600 @default.
- W2592244930 cites W2095498620 @default.
- W2592244930 cites W2107794977 @default.
- W2592244930 cites W2108718991 @default.
- W2592244930 cites W2112408821 @default.
- W2592244930 cites W2113977541 @default.
- W2592244930 cites W2114104545 @default.
- W2592244930 cites W2116601594 @default.
- W2592244930 cites W2117029130 @default.
- W2592244930 cites W2120778579 @default.
- W2592244930 cites W2122796622 @default.
- W2592244930 cites W2125826054 @default.
- W2592244930 cites W2126218947 @default.
- W2592244930 cites W2127602818 @default.
- W2592244930 cites W2133423359 @default.
- W2592244930 cites W2133992729 @default.
- W2592244930 cites W2136325639 @default.
- W2592244930 cites W2137526110 @default.
- W2592244930 cites W2141425631 @default.
- W2592244930 cites W2145664556 @default.
- W2592244930 cites W2147618390 @default.
- W2592244930 cites W2147825765 @default.
- W2592244930 cites W2147962921 @default.
- W2592244930 cites W2149573313 @default.
- W2592244930 cites W2152239989 @default.
- W2592244930 cites W2156631105 @default.
- W2592244930 cites W2156975150 @default.
- W2592244930 cites W2157159562 @default.
- W2592244930 cites W2160697532 @default.
- W2592244930 cites W2161163382 @default.
- W2592244930 cites W2163169537 @default.
- W2592244930 cites W2165909549 @default.
- W2592244930 cites W2166171121 @default.
- W2592244930 cites W2166562121 @default.
- W2592244930 cites W2168249366 @default.
- W2592244930 cites W2169878945 @default.
- W2592244930 cites W2170024099 @default.
- W2592244930 cites W2170486072 @default.
- W2592244930 cites W2179438025 @default.
- W2592244930 cites W2322410776 @default.
- W2592244930 cites W2325193959 @default.
- W2592244930 cites W3098806227 @default.
- W2592244930 cites W3103302162 @default.
- W2592244930 cites W3123608026 @default.
- W2592244930 doi "https://doi.org/10.1186/s40168-017-0237-y" @default.
- W2592244930 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5335496" @default.
- W2592244930 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28253908" @default.
- W2592244930 hasPublicationYear "2017" @default.
- W2592244930 type Work @default.
- W2592244930 sameAs 2592244930 @default.
- W2592244930 citedByCount "1247" @default.
- W2592244930 countsByYear W25922449302017 @default.