Matches in SemOpenAlex for { <https://semopenalex.org/work/W2592343442> ?p ?o ?g. }
- W2592343442 endingPage "e0173372" @default.
- W2592343442 startingPage "e0173372" @default.
- W2592343442 abstract "Detecting early morphological changes in the brain and making early diagnosis are important for Alzheimer's disease (AD). High resolution magnetic resonance imaging can be used to help diagnosis and prediction of the disease. In this paper, we proposed a machine learning method to discriminate patients with AD or mild cognitive impairment (MCI) from healthy elderly and to predict the AD conversion in MCI patients by computing and analyzing the regional morphological differences of brain between groups. Distance between each pair of subjects was quantified from a symmetric diffeomorphic registration, followed by an embedding algorithm and a learning approach for classification. The proposed method obtained accuracy of 96.5% in differentiating mild AD from healthy elderly with the whole-brain gray matter or temporal lobe as region of interest (ROI), 91.74% in differentiating progressive MCI from healthy elderly and 88.99% in classifying progressive MCI versus stable MCI with amygdala or hippocampus as ROI. This deformation-based method has made full use of the pair-wise macroscopic shape difference between groups and consequently increased the power for discrimination." @default.
- W2592343442 created "2017-03-16" @default.
- W2592343442 creator A5028149360 @default.
- W2592343442 creator A5035352293 @default.
- W2592343442 creator A5078526337 @default.
- W2592343442 creator A5084490066 @default.
- W2592343442 creator A5086113993 @default.
- W2592343442 date "2017-03-06" @default.
- W2592343442 modified "2023-10-16" @default.
- W2592343442 title "Prediction and classification of Alzheimer disease based on quantification of MRI deformation" @default.
- W2592343442 cites W1483555958 @default.
- W2592343442 cites W1486184289 @default.
- W2592343442 cites W1914584256 @default.
- W2592343442 cites W1960717653 @default.
- W2592343442 cites W1966378897 @default.
- W2592343442 cites W1967737804 @default.
- W2592343442 cites W1968065637 @default.
- W2592343442 cites W1970300450 @default.
- W2592343442 cites W1970488531 @default.
- W2592343442 cites W1970684162 @default.
- W2592343442 cites W1971316923 @default.
- W2592343442 cites W1979062697 @default.
- W2592343442 cites W1980774982 @default.
- W2592343442 cites W1987011701 @default.
- W2592343442 cites W1989217296 @default.
- W2592343442 cites W1992054897 @default.
- W2592343442 cites W2001141328 @default.
- W2592343442 cites W2001648635 @default.
- W2592343442 cites W2004108970 @default.
- W2592343442 cites W2008301592 @default.
- W2592343442 cites W2025915778 @default.
- W2592343442 cites W2028580299 @default.
- W2592343442 cites W2031425398 @default.
- W2592343442 cites W2036461653 @default.
- W2592343442 cites W2048468733 @default.
- W2592343442 cites W2052742260 @default.
- W2592343442 cites W2058161128 @default.
- W2592343442 cites W2067152776 @default.
- W2592343442 cites W2074267385 @default.
- W2592343442 cites W2077822545 @default.
- W2592343442 cites W2078551663 @default.
- W2592343442 cites W2078998718 @default.
- W2592343442 cites W2079484785 @default.
- W2592343442 cites W2080770218 @default.
- W2592343442 cites W2081126811 @default.
- W2592343442 cites W2086978209 @default.
- W2592343442 cites W2088309143 @default.
- W2592343442 cites W2093602450 @default.
- W2592343442 cites W2097440479 @default.
- W2592343442 cites W2101135654 @default.
- W2592343442 cites W2102508963 @default.
- W2592343442 cites W2106931873 @default.
- W2592343442 cites W2107564884 @default.
- W2592343442 cites W2108019246 @default.
- W2592343442 cites W2109845730 @default.
- W2592343442 cites W2111913931 @default.
- W2592343442 cites W2113319997 @default.
- W2592343442 cites W2119406369 @default.
- W2592343442 cites W2121856409 @default.
- W2592343442 cites W2127256277 @default.
- W2592343442 cites W2131437398 @default.
- W2592343442 cites W2134547791 @default.
- W2592343442 cites W2143017382 @default.
- W2592343442 cites W2143826137 @default.
- W2592343442 cites W2144803285 @default.
- W2592343442 cites W2151130155 @default.
- W2592343442 cites W2151721316 @default.
- W2592343442 cites W2151920318 @default.
- W2592343442 cites W2155164847 @default.
- W2592343442 cites W2157633021 @default.
- W2592343442 cites W2158592797 @default.
- W2592343442 cites W2162333503 @default.
- W2592343442 cites W2171380313 @default.
- W2592343442 cites W2171831801 @default.
- W2592343442 cites W2218823830 @default.
- W2592343442 cites W4211156109 @default.
- W2592343442 cites W4249221250 @default.
- W2592343442 doi "https://doi.org/10.1371/journal.pone.0173372" @default.
- W2592343442 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5338815" @default.
- W2592343442 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28264071" @default.
- W2592343442 hasPublicationYear "2017" @default.
- W2592343442 type Work @default.
- W2592343442 sameAs 2592343442 @default.
- W2592343442 citedByCount "112" @default.
- W2592343442 countsByYear W25923434422017 @default.
- W2592343442 countsByYear W25923434422018 @default.
- W2592343442 countsByYear W25923434422019 @default.
- W2592343442 countsByYear W25923434422020 @default.
- W2592343442 countsByYear W25923434422021 @default.
- W2592343442 countsByYear W25923434422022 @default.
- W2592343442 countsByYear W25923434422023 @default.
- W2592343442 crossrefType "journal-article" @default.
- W2592343442 hasAuthorship W2592343442A5028149360 @default.
- W2592343442 hasAuthorship W2592343442A5035352293 @default.
- W2592343442 hasAuthorship W2592343442A5078526337 @default.
- W2592343442 hasAuthorship W2592343442A5084490066 @default.
- W2592343442 hasAuthorship W2592343442A5086113993 @default.
- W2592343442 hasBestOaLocation W25923434421 @default.