Matches in SemOpenAlex for { <https://semopenalex.org/work/W2592393043> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2592393043 endingPage "1734" @default.
- W2592393043 startingPage "1721" @default.
- W2592393043 abstract "Abstract A heat-engine analysis of a climate system requires the determination of the solar absorption temperature and the terrestrial emission temperature. These temperatures are entropically defined as the ratio of the energy exchanged to the entropy produced. The emission temperature, shown here to be greater than or equal to the effective emission temperature, is relatively well known. In contrast, the absorption temperature requires radiative transfer calculations for its determination and is poorly known. The maximum material (i.e., nonradiative) entropy production of a planet’s steady-state climate system is a function of the absorption and emission temperatures. Because a climate system does no work, the material entropy production measures the system’s activity. The sensitivity of this production to changes in the emission and absorption temperatures is quantified. If Earth’s albedo does not change, material entropy production would increase by about 5% per 1-K increase in absorption temperature. If the absorption temperature does not change, entropy production would decrease by about 4% for a 1% decrease in albedo. It is shown that, as a planet’s emission temperature becomes more uniform, its entropy production tends to increase. Conversely, as a planet’s absorption temperature or albedo becomes more uniform, its entropy production tends to decrease. These findings underscore the need to monitor the absorption temperature and albedo both in nature and in climate models. The heat-engine analyses for four planets show that the planetary entropy productions are similar for Earth, Mars, and Titan. The production for Venus is close to the maximum production possible for fixed absorption temperature." @default.
- W2592393043 created "2017-03-16" @default.
- W2592393043 creator A5004064358 @default.
- W2592393043 creator A5082638338 @default.
- W2592393043 date "2017-05-10" @default.
- W2592393043 modified "2023-10-13" @default.
- W2592393043 title "Toward Quantifying the Climate Heat Engine: Solar Absorption and Terrestrial Emission Temperatures and Material Entropy Production" @default.
- W2592393043 cites W1970936969 @default.
- W2592393043 cites W1973500733 @default.
- W2592393043 cites W1979993739 @default.
- W2592393043 cites W2005077753 @default.
- W2592393043 cites W2015320755 @default.
- W2592393043 cites W2018351159 @default.
- W2592393043 cites W2018416887 @default.
- W2592393043 cites W2021797569 @default.
- W2592393043 cites W2039925464 @default.
- W2592393043 cites W2052795584 @default.
- W2592393043 cites W2054930414 @default.
- W2592393043 cites W2077136239 @default.
- W2592393043 cites W2098606678 @default.
- W2592393043 cites W2103651007 @default.
- W2592393043 cites W2126419433 @default.
- W2592393043 cites W2160788673 @default.
- W2592393043 cites W2167018289 @default.
- W2592393043 cites W2213305380 @default.
- W2592393043 cites W2318680928 @default.
- W2592393043 cites W2419204556 @default.
- W2592393043 cites W3098410444 @default.
- W2592393043 cites W3104908327 @default.
- W2592393043 cites W4240189798 @default.
- W2592393043 doi "https://doi.org/10.1175/jas-d-16-0240.1" @default.
- W2592393043 hasPublicationYear "2017" @default.
- W2592393043 type Work @default.
- W2592393043 sameAs 2592393043 @default.
- W2592393043 citedByCount "12" @default.
- W2592393043 countsByYear W25923930432018 @default.
- W2592393043 countsByYear W25923930432019 @default.
- W2592393043 countsByYear W25923930432020 @default.
- W2592393043 countsByYear W25923930432021 @default.
- W2592393043 countsByYear W25923930432022 @default.
- W2592393043 crossrefType "journal-article" @default.
- W2592393043 hasAuthorship W2592393043A5004064358 @default.
- W2592393043 hasAuthorship W2592393043A5082638338 @default.
- W2592393043 hasBestOaLocation W25923930431 @default.
- W2592393043 hasConcept C120665830 @default.
- W2592393043 hasConcept C121332964 @default.
- W2592393043 hasConcept C192562407 @default.
- W2592393043 hasConcept C207282930 @default.
- W2592393043 hasConcept C39432304 @default.
- W2592393043 hasConcept C74902906 @default.
- W2592393043 hasConcept C91586092 @default.
- W2592393043 hasConcept C97355855 @default.
- W2592393043 hasConceptScore W2592393043C120665830 @default.
- W2592393043 hasConceptScore W2592393043C121332964 @default.
- W2592393043 hasConceptScore W2592393043C192562407 @default.
- W2592393043 hasConceptScore W2592393043C207282930 @default.
- W2592393043 hasConceptScore W2592393043C39432304 @default.
- W2592393043 hasConceptScore W2592393043C74902906 @default.
- W2592393043 hasConceptScore W2592393043C91586092 @default.
- W2592393043 hasConceptScore W2592393043C97355855 @default.
- W2592393043 hasIssue "6" @default.
- W2592393043 hasLocation W25923930431 @default.
- W2592393043 hasOpenAccess W2592393043 @default.
- W2592393043 hasPrimaryLocation W25923930431 @default.
- W2592393043 hasRelatedWork W122617759 @default.
- W2592393043 hasRelatedWork W1967646827 @default.
- W2592393043 hasRelatedWork W2050857945 @default.
- W2592393043 hasRelatedWork W2210727713 @default.
- W2592393043 hasRelatedWork W2585500456 @default.
- W2592393043 hasRelatedWork W2611639027 @default.
- W2592393043 hasRelatedWork W2899084033 @default.
- W2592393043 hasRelatedWork W2997769190 @default.
- W2592393043 hasRelatedWork W4248528633 @default.
- W2592393043 hasRelatedWork W4386555858 @default.
- W2592393043 hasVolume "74" @default.
- W2592393043 isParatext "false" @default.
- W2592393043 isRetracted "false" @default.
- W2592393043 magId "2592393043" @default.
- W2592393043 workType "article" @default.