Matches in SemOpenAlex for { <https://semopenalex.org/work/W2592509910> ?p ?o ?g. }
- W2592509910 abstract "Abstract Recent advances in large scale computing architectures enable new opportunities to extract value out of the vast amounts of data being currently generated. However, their successful adoption is not straightforward in areas like science, as there are still some barriers that need to be overcome. Those comprise (i) the existence of legacy code that needs to be ported, (ii) the lack of high-level and use case specific frameworks that facilitate a smoother transition, or (iii) the scarcity of profiles with the balanced skill sets between the technological and scientific domains. The European Space Agency’s Gaia mission will create the largest and most precise three dimensional chart of our galaxy (the Milky Way), providing unprecedented position, parallax and proper motion measurements for about one billion stars. The successful exploitation of this data archive will depend on the ability to offer the proper infrastructure upon which scientists will be able to do exploration and modelling with this huge data set. In this paper, we present and contextualize these challenges by building two probabilistic models using Hierarchical Bayesian Modelling. These models represent a key challenge in astronomy and are of paramount importance for the Gaia mission itself. Moreover, we approach the implementation by leveraging a generic distributed processing engine through an existing software package for Markov chain Monte Carlo sampling. The two computationally intensive models are then validated with simulated data in different scenarios under specific restrictions, and their performance is assessed to prove their scalability. We argue that this approach will not only serve for the models in hand but also for exemplifying how to address similar problems in science, which may need to both scale to bigger data sets and reuse existing software as much as possible. This will lead to shorter time to science in massive data archives." @default.
- W2592509910 created "2017-03-16" @default.
- W2592509910 creator A5002647118 @default.
- W2592509910 creator A5016447094 @default.
- W2592509910 creator A5033104023 @default.
- W2592509910 creator A5058545013 @default.
- W2592509910 creator A5084086861 @default.
- W2592509910 date "2017-04-01" @default.
- W2592509910 modified "2023-10-12" @default.
- W2592509910 title "Enabling data science in the Gaia mission archive: The present-day mass function and age distribution" @default.
- W2592509910 cites W147232447 @default.
- W2592509910 cites W15379053 @default.
- W2592509910 cites W1569369979 @default.
- W2592509910 cites W1651625227 @default.
- W2592509910 cites W1663973292 @default.
- W2592509910 cites W1668907131 @default.
- W2592509910 cites W1968468356 @default.
- W2592509910 cites W1975889887 @default.
- W2592509910 cites W1976821017 @default.
- W2592509910 cites W1982003698 @default.
- W2592509910 cites W2005112390 @default.
- W2592509910 cites W2015295900 @default.
- W2592509910 cites W2025020517 @default.
- W2592509910 cites W2035196713 @default.
- W2592509910 cites W2037620269 @default.
- W2592509910 cites W2038412523 @default.
- W2592509910 cites W2043097023 @default.
- W2592509910 cites W2043099794 @default.
- W2592509910 cites W2048388159 @default.
- W2592509910 cites W2065268157 @default.
- W2592509910 cites W2071989194 @default.
- W2592509910 cites W2074935284 @default.
- W2592509910 cites W2075947452 @default.
- W2592509910 cites W2101687185 @default.
- W2592509910 cites W2113640782 @default.
- W2592509910 cites W2118711883 @default.
- W2592509910 cites W2119738171 @default.
- W2592509910 cites W2123686039 @default.
- W2592509910 cites W2131975293 @default.
- W2592509910 cites W2136202785 @default.
- W2592509910 cites W2158335939 @default.
- W2592509910 cites W2161457086 @default.
- W2592509910 cites W2162422655 @default.
- W2592509910 cites W2173213060 @default.
- W2592509910 cites W2184623761 @default.
- W2592509910 cites W2413988422 @default.
- W2592509910 cites W2502881419 @default.
- W2592509910 cites W2512457384 @default.
- W2592509910 cites W2522000147 @default.
- W2592509910 cites W2949813383 @default.
- W2592509910 cites W2963977107 @default.
- W2592509910 cites W3018033682 @default.
- W2592509910 cites W3020204246 @default.
- W2592509910 cites W3100719866 @default.
- W2592509910 cites W3102014803 @default.
- W2592509910 cites W3103747523 @default.
- W2592509910 cites W3104298728 @default.
- W2592509910 cites W3105401162 @default.
- W2592509910 cites W3165546968 @default.
- W2592509910 cites W99333336 @default.
- W2592509910 doi "https://doi.org/10.1016/j.ascom.2017.02.001" @default.
- W2592509910 hasPublicationYear "2017" @default.
- W2592509910 type Work @default.
- W2592509910 sameAs 2592509910 @default.
- W2592509910 citedByCount "5" @default.
- W2592509910 countsByYear W25925099102018 @default.
- W2592509910 countsByYear W25925099102019 @default.
- W2592509910 countsByYear W25925099102020 @default.
- W2592509910 crossrefType "journal-article" @default.
- W2592509910 hasAuthorship W2592509910A5002647118 @default.
- W2592509910 hasAuthorship W2592509910A5016447094 @default.
- W2592509910 hasAuthorship W2592509910A5033104023 @default.
- W2592509910 hasAuthorship W2592509910A5058545013 @default.
- W2592509910 hasAuthorship W2592509910A5084086861 @default.
- W2592509910 hasConcept C107673813 @default.
- W2592509910 hasConcept C111350023 @default.
- W2592509910 hasConcept C154945302 @default.
- W2592509910 hasConcept C177264268 @default.
- W2592509910 hasConcept C199360897 @default.
- W2592509910 hasConcept C2522767166 @default.
- W2592509910 hasConcept C2776397876 @default.
- W2592509910 hasConcept C2777904410 @default.
- W2592509910 hasConcept C41008148 @default.
- W2592509910 hasConcept C48044578 @default.
- W2592509910 hasConcept C77088390 @default.
- W2592509910 hasConceptScore W2592509910C107673813 @default.
- W2592509910 hasConceptScore W2592509910C111350023 @default.
- W2592509910 hasConceptScore W2592509910C154945302 @default.
- W2592509910 hasConceptScore W2592509910C177264268 @default.
- W2592509910 hasConceptScore W2592509910C199360897 @default.
- W2592509910 hasConceptScore W2592509910C2522767166 @default.
- W2592509910 hasConceptScore W2592509910C2776397876 @default.
- W2592509910 hasConceptScore W2592509910C2777904410 @default.
- W2592509910 hasConceptScore W2592509910C41008148 @default.
- W2592509910 hasConceptScore W2592509910C48044578 @default.
- W2592509910 hasConceptScore W2592509910C77088390 @default.
- W2592509910 hasFunder F4320321837 @default.
- W2592509910 hasFunder F4320333065 @default.
- W2592509910 hasLocation W25925099101 @default.
- W2592509910 hasOpenAccess W2592509910 @default.