Matches in SemOpenAlex for { <https://semopenalex.org/work/W2592828361> ?p ?o ?g. }
- W2592828361 endingPage "103" @default.
- W2592828361 startingPage "90" @default.
- W2592828361 abstract "The segmentation of cell nuclei is an important step towards the automated analysis of histological images. The presence of a large number of nuclei in whole-slide images necessitates methods that are computationally tractable in addition to being effective. In this work, a method is developed for the robust segmentation of cell nuclei in histological images based on the principles of persistent homology. More specifically, an abstract simplicial homology approach for image segmentation is established. Essentially, the approach deals with the persistence of disconnected sets in the image, thus identifying salient regions that express patterns of persistence. By introducing an image representation based on topological features, the task of segmentation is less dependent on variations of color or texture. This results in a novel approach that generalizes well and provides stable performance. The method conceptualizes regions of interest (cell nuclei) pertinent to their topological features in a successful manner. The time cost of the proposed approach is lower-bounded by an almost linear behavior and upper-bounded by O(n2) in a worst-case scenario. Time complexity matches a quasilinear behavior which is O(n1+ɛ) for ε < 1. Images acquired from histological sections of liver tissue are used as a case study to demonstrate the effectiveness of the approach. The histological landscape consists of hepatocytes and non-parenchymal cells. The accuracy of the proposed methodology is verified against an automated workflow created by the output of a conventional filter bank (validated by experts) and the supervised training of a random forest classifier. The results are obtained on a per-object basis. The proposed workflow successfully detected both hepatocyte and non-parenchymal cell nuclei with an accuracy of 84.6%, and hepatocyte cell nuclei only with an accuracy of 86.2%. A public histological dataset with supplied ground-truth data is also used for evaluating the performance of the proposed approach (accuracy: 94.5%). Further validations are carried out with a publicly available dataset and ground-truth data from the Gland Segmentation in Colon Histology Images Challenge (GlaS) contest. The proposed method is useful for obtaining unsupervised robust initial segmentations that can be further integrated in image/data processing and management pipelines. The development of a fully automated system supporting a human expert provides tangible benefits in the context of clinical decision-making." @default.
- W2592828361 created "2017-03-16" @default.
- W2592828361 creator A5010536779 @default.
- W2592828361 creator A5025804513 @default.
- W2592828361 creator A5034568414 @default.
- W2592828361 creator A5058204085 @default.
- W2592828361 creator A5063203307 @default.
- W2592828361 creator A5083128555 @default.
- W2592828361 creator A5088017596 @default.
- W2592828361 creator A5089777657 @default.
- W2592828361 date "2017-05-01" @default.
- W2592828361 modified "2023-10-02" @default.
- W2592828361 title "Robust detection and segmentation of cell nuclei in biomedical images based on a computational topology framework" @default.
- W2592828361 cites W1582640985 @default.
- W2592828361 cites W1887296478 @default.
- W2592828361 cites W1968615915 @default.
- W2592828361 cites W1985161776 @default.
- W2592828361 cites W1993880920 @default.
- W2592828361 cites W2004369799 @default.
- W2592828361 cites W2012050899 @default.
- W2592828361 cites W2018810807 @default.
- W2592828361 cites W2025993225 @default.
- W2592828361 cites W2037815679 @default.
- W2592828361 cites W2039758605 @default.
- W2592828361 cites W2043034051 @default.
- W2592828361 cites W2051765910 @default.
- W2592828361 cites W2053798192 @default.
- W2592828361 cites W2064575351 @default.
- W2592828361 cites W2071391326 @default.
- W2592828361 cites W2080457512 @default.
- W2592828361 cites W2088838629 @default.
- W2592828361 cites W2095542592 @default.
- W2592828361 cites W2096579040 @default.
- W2592828361 cites W2097335279 @default.
- W2592828361 cites W2105739910 @default.
- W2592828361 cites W2123269393 @default.
- W2592828361 cites W2129523948 @default.
- W2592828361 cites W2129916129 @default.
- W2592828361 cites W2142332605 @default.
- W2592828361 cites W2144044408 @default.
- W2592828361 cites W2149544692 @default.
- W2592828361 cites W2159551006 @default.
- W2592828361 cites W2168846978 @default.
- W2592828361 cites W2175543269 @default.
- W2592828361 cites W2288892845 @default.
- W2592828361 cites W2331667420 @default.
- W2592828361 cites W2396945832 @default.
- W2592828361 cites W2470965540 @default.
- W2592828361 cites W3013843370 @default.
- W2592828361 doi "https://doi.org/10.1016/j.media.2017.02.009" @default.
- W2592828361 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28314191" @default.
- W2592828361 hasPublicationYear "2017" @default.
- W2592828361 type Work @default.
- W2592828361 sameAs 2592828361 @default.
- W2592828361 citedByCount "26" @default.
- W2592828361 countsByYear W25928283612017 @default.
- W2592828361 countsByYear W25928283612018 @default.
- W2592828361 countsByYear W25928283612019 @default.
- W2592828361 countsByYear W25928283612020 @default.
- W2592828361 countsByYear W25928283612021 @default.
- W2592828361 countsByYear W25928283612022 @default.
- W2592828361 countsByYear W25928283612023 @default.
- W2592828361 crossrefType "journal-article" @default.
- W2592828361 hasAuthorship W2592828361A5010536779 @default.
- W2592828361 hasAuthorship W2592828361A5025804513 @default.
- W2592828361 hasAuthorship W2592828361A5034568414 @default.
- W2592828361 hasAuthorship W2592828361A5058204085 @default.
- W2592828361 hasAuthorship W2592828361A5063203307 @default.
- W2592828361 hasAuthorship W2592828361A5083128555 @default.
- W2592828361 hasAuthorship W2592828361A5088017596 @default.
- W2592828361 hasAuthorship W2592828361A5089777657 @default.
- W2592828361 hasConcept C110521144 @default.
- W2592828361 hasConcept C11413529 @default.
- W2592828361 hasConcept C124504099 @default.
- W2592828361 hasConcept C134306372 @default.
- W2592828361 hasConcept C153180895 @default.
- W2592828361 hasConcept C154945302 @default.
- W2592828361 hasConcept C169258074 @default.
- W2592828361 hasConcept C181576044 @default.
- W2592828361 hasConcept C2874115 @default.
- W2592828361 hasConcept C31972630 @default.
- W2592828361 hasConcept C33923547 @default.
- W2592828361 hasConcept C34388435 @default.
- W2592828361 hasConcept C37914503 @default.
- W2592828361 hasConcept C41008148 @default.
- W2592828361 hasConcept C65885262 @default.
- W2592828361 hasConcept C89600930 @default.
- W2592828361 hasConcept C95623464 @default.
- W2592828361 hasConceptScore W2592828361C110521144 @default.
- W2592828361 hasConceptScore W2592828361C11413529 @default.
- W2592828361 hasConceptScore W2592828361C124504099 @default.
- W2592828361 hasConceptScore W2592828361C134306372 @default.
- W2592828361 hasConceptScore W2592828361C153180895 @default.
- W2592828361 hasConceptScore W2592828361C154945302 @default.
- W2592828361 hasConceptScore W2592828361C169258074 @default.
- W2592828361 hasConceptScore W2592828361C181576044 @default.
- W2592828361 hasConceptScore W2592828361C2874115 @default.
- W2592828361 hasConceptScore W2592828361C31972630 @default.