Matches in SemOpenAlex for { <https://semopenalex.org/work/W2592836715> ?p ?o ?g. }
- W2592836715 endingPage "363" @default.
- W2592836715 startingPage "350" @default.
- W2592836715 abstract "In this work, we consider the problem of predicting the remaining useful life of a piece of equipment, based on data collected from a heterogeneous fleet working under different operating conditions. When the equipment experiences variable operating conditions, individual data-driven prognostic models are not able to accurately predict the remaining useful life during the entire equipment life. The objective of this work is to develop an ensemble approach of different prognostic models for aggregating their remaining useful life predictions in an adaptive way, for good performance throughout the degradation progression. Two data-driven prognostic models are considered, a homogeneous discrete-time finite-state semi-Markov model and a fuzzy similarity–based model. The ensemble approach is based on a locally weighted strategy that aggregates the outcomes of the two prognostic models of the ensemble by assigning to each model a weight and a bias related to its local performance, that is, the accuracy in predicting the remaining useful life of patterns of a validation set similar to the one under study. The proposed approach is applied to a case study regarding a heterogeneous fleet of aluminum electrolytic capacitors used in electric vehicle powertrains. The results have shown that the proposed ensemble approach is able to provide more accurate remaining useful life predictions throughout the entire life of the equipment compared to an alternative ensemble approach and to each individual homogeneous discrete-time finite-state semi-Markov model and fuzzy similarity–based models." @default.
- W2592836715 created "2017-03-16" @default.
- W2592836715 creator A5012431211 @default.
- W2592836715 creator A5048799305 @default.
- W2592836715 creator A5068104049 @default.
- W2592836715 creator A5070579143 @default.
- W2592836715 date "2017-03-07" @default.
- W2592836715 modified "2023-10-18" @default.
- W2592836715 title "A locally adaptive ensemble approach for data-driven prognostics of heterogeneous fleets" @default.
- W2592836715 cites W1598341355 @default.
- W2592836715 cites W1932579808 @default.
- W2592836715 cites W1967372803 @default.
- W2592836715 cites W1970644055 @default.
- W2592836715 cites W1972820653 @default.
- W2592836715 cites W1976146618 @default.
- W2592836715 cites W1990979046 @default.
- W2592836715 cites W1995993925 @default.
- W2592836715 cites W2003197017 @default.
- W2592836715 cites W2005440400 @default.
- W2592836715 cites W2008595450 @default.
- W2592836715 cites W2017300542 @default.
- W2592836715 cites W2020776245 @default.
- W2592836715 cites W2022160905 @default.
- W2592836715 cites W2033800551 @default.
- W2592836715 cites W2042311265 @default.
- W2592836715 cites W2045186954 @default.
- W2592836715 cites W2054570131 @default.
- W2592836715 cites W2055873761 @default.
- W2592836715 cites W2062758573 @default.
- W2592836715 cites W2064323378 @default.
- W2592836715 cites W2070791763 @default.
- W2592836715 cites W2073028428 @default.
- W2592836715 cites W2078263418 @default.
- W2592836715 cites W2087251900 @default.
- W2592836715 cites W2098608159 @default.
- W2592836715 cites W2102751318 @default.
- W2592836715 cites W2104112427 @default.
- W2592836715 cites W2106049364 @default.
- W2592836715 cites W2108653992 @default.
- W2592836715 cites W2109961708 @default.
- W2592836715 cites W2118282559 @default.
- W2592836715 cites W2119777027 @default.
- W2592836715 cites W2123771671 @default.
- W2592836715 cites W2125874559 @default.
- W2592836715 cites W2151017405 @default.
- W2592836715 cites W2152270473 @default.
- W2592836715 cites W2160305672 @default.
- W2592836715 cites W2167917621 @default.
- W2592836715 cites W2495649841 @default.
- W2592836715 cites W2797791043 @default.
- W2592836715 cites W4249625715 @default.
- W2592836715 cites W615852558 @default.
- W2592836715 doi "https://doi.org/10.1177/1748006x17693519" @default.
- W2592836715 hasPublicationYear "2017" @default.
- W2592836715 type Work @default.
- W2592836715 sameAs 2592836715 @default.
- W2592836715 citedByCount "8" @default.
- W2592836715 countsByYear W25928367152017 @default.
- W2592836715 countsByYear W25928367152019 @default.
- W2592836715 countsByYear W25928367152021 @default.
- W2592836715 countsByYear W25928367152022 @default.
- W2592836715 countsByYear W25928367152023 @default.
- W2592836715 crossrefType "journal-article" @default.
- W2592836715 hasAuthorship W2592836715A5012431211 @default.
- W2592836715 hasAuthorship W2592836715A5048799305 @default.
- W2592836715 hasAuthorship W2592836715A5068104049 @default.
- W2592836715 hasAuthorship W2592836715A5070579143 @default.
- W2592836715 hasBestOaLocation W25928367152 @default.
- W2592836715 hasConcept C119857082 @default.
- W2592836715 hasConcept C119898033 @default.
- W2592836715 hasConcept C124101348 @default.
- W2592836715 hasConcept C129364497 @default.
- W2592836715 hasConcept C134306372 @default.
- W2592836715 hasConcept C154945302 @default.
- W2592836715 hasConcept C163836022 @default.
- W2592836715 hasConcept C177264268 @default.
- W2592836715 hasConcept C182365436 @default.
- W2592836715 hasConcept C199360897 @default.
- W2592836715 hasConcept C33923547 @default.
- W2592836715 hasConcept C41008148 @default.
- W2592836715 hasConcept C58166 @default.
- W2592836715 hasConcept C98763669 @default.
- W2592836715 hasConceptScore W2592836715C119857082 @default.
- W2592836715 hasConceptScore W2592836715C119898033 @default.
- W2592836715 hasConceptScore W2592836715C124101348 @default.
- W2592836715 hasConceptScore W2592836715C129364497 @default.
- W2592836715 hasConceptScore W2592836715C134306372 @default.
- W2592836715 hasConceptScore W2592836715C154945302 @default.
- W2592836715 hasConceptScore W2592836715C163836022 @default.
- W2592836715 hasConceptScore W2592836715C177264268 @default.
- W2592836715 hasConceptScore W2592836715C182365436 @default.
- W2592836715 hasConceptScore W2592836715C199360897 @default.
- W2592836715 hasConceptScore W2592836715C33923547 @default.
- W2592836715 hasConceptScore W2592836715C41008148 @default.
- W2592836715 hasConceptScore W2592836715C58166 @default.
- W2592836715 hasConceptScore W2592836715C98763669 @default.
- W2592836715 hasIssue "4" @default.
- W2592836715 hasLocation W25928367151 @default.