Matches in SemOpenAlex for { <https://semopenalex.org/work/W2592902783> ?p ?o ?g. }
- W2592902783 endingPage "5530" @default.
- W2592902783 startingPage "5515" @default.
- W2592902783 abstract "The faults of rolling element bearings can result in the deterioration of machine operating conditions; how to assess the working condition and identify the fault of the rolling element bearing has become a key issue for ensuring the safe operation of modern rotating machineries. This paper presents a novel hybrid approach that detects bearing faults and monitors the operating status of rolling element bearings in modern rotating machineries. Based on redundant second-generation wavelet packet transform and local characteristic-scale decomposition, this method is implemented to extract the fault features, the vibration signal is adaptively decomposed into a number of desired intrinsic scale components by two-step screening processes based on the energy ratio, and reduce random noises and eliminate the pseudofrequency components. The fault features are then used to implement the identification classification of faults using singular value decomposition and extreme learning machine. The approach is evaluated by simulation and practical bearing vibration signals under different conditions. The experiment results show that the proposed approach is feasible and effective for the fault diagnosis of rolling element bearing." @default.
- W2592902783 created "2017-03-16" @default.
- W2592902783 creator A5000113190 @default.
- W2592902783 creator A5002786739 @default.
- W2592902783 creator A5008909533 @default.
- W2592902783 creator A5035804461 @default.
- W2592902783 creator A5052762452 @default.
- W2592902783 creator A5061856521 @default.
- W2592902783 creator A5068428294 @default.
- W2592902783 creator A5082864988 @default.
- W2592902783 date "2017-01-01" @default.
- W2592902783 modified "2023-10-16" @default.
- W2592902783 title "A Fault Diagnosis Approach for Rolling Element Bearings Based on RSGWPT-LCD Bilayer Screening and Extreme Learning Machine" @default.
- W2592902783 cites W1498136708 @default.
- W2592902783 cites W1963622639 @default.
- W2592902783 cites W1968722641 @default.
- W2592902783 cites W1975921140 @default.
- W2592902783 cites W1979117586 @default.
- W2592902783 cites W1993717606 @default.
- W2592902783 cites W1998264197 @default.
- W2592902783 cites W1999277347 @default.
- W2592902783 cites W2000911430 @default.
- W2592902783 cites W2001903231 @default.
- W2592902783 cites W2007221293 @default.
- W2592902783 cites W2020919250 @default.
- W2592902783 cites W2022243308 @default.
- W2592902783 cites W2023236081 @default.
- W2592902783 cites W2031423206 @default.
- W2592902783 cites W2034603009 @default.
- W2592902783 cites W2045186954 @default.
- W2592902783 cites W2056652334 @default.
- W2592902783 cites W2063792958 @default.
- W2592902783 cites W2075538140 @default.
- W2592902783 cites W2085857317 @default.
- W2592902783 cites W2088202114 @default.
- W2592902783 cites W2088654600 @default.
- W2592902783 cites W2090794716 @default.
- W2592902783 cites W2091305989 @default.
- W2592902783 cites W2094625209 @default.
- W2592902783 cites W2106735713 @default.
- W2592902783 cites W2117188745 @default.
- W2592902783 cites W2120390927 @default.
- W2592902783 cites W2136787066 @default.
- W2592902783 cites W2140554090 @default.
- W2592902783 cites W2160440076 @default.
- W2592902783 cites W4240658626 @default.
- W2592902783 doi "https://doi.org/10.1109/access.2017.2675940" @default.
- W2592902783 hasPublicationYear "2017" @default.
- W2592902783 type Work @default.
- W2592902783 sameAs 2592902783 @default.
- W2592902783 citedByCount "43" @default.
- W2592902783 countsByYear W25929027832018 @default.
- W2592902783 countsByYear W25929027832019 @default.
- W2592902783 countsByYear W25929027832020 @default.
- W2592902783 countsByYear W25929027832021 @default.
- W2592902783 countsByYear W25929027832022 @default.
- W2592902783 countsByYear W25929027832023 @default.
- W2592902783 crossrefType "journal-article" @default.
- W2592902783 hasAuthorship W2592902783A5000113190 @default.
- W2592902783 hasAuthorship W2592902783A5002786739 @default.
- W2592902783 hasAuthorship W2592902783A5008909533 @default.
- W2592902783 hasAuthorship W2592902783A5035804461 @default.
- W2592902783 hasAuthorship W2592902783A5052762452 @default.
- W2592902783 hasAuthorship W2592902783A5061856521 @default.
- W2592902783 hasAuthorship W2592902783A5068428294 @default.
- W2592902783 hasAuthorship W2592902783A5082864988 @default.
- W2592902783 hasBestOaLocation W25929027831 @default.
- W2592902783 hasConcept C105795698 @default.
- W2592902783 hasConcept C119599485 @default.
- W2592902783 hasConcept C121332964 @default.
- W2592902783 hasConcept C127313418 @default.
- W2592902783 hasConcept C127413603 @default.
- W2592902783 hasConcept C152745839 @default.
- W2592902783 hasConcept C154945302 @default.
- W2592902783 hasConcept C155777637 @default.
- W2592902783 hasConcept C165205528 @default.
- W2592902783 hasConcept C172707124 @default.
- W2592902783 hasConcept C175551986 @default.
- W2592902783 hasConcept C186370098 @default.
- W2592902783 hasConcept C196216189 @default.
- W2592902783 hasConcept C198394728 @default.
- W2592902783 hasConcept C199360897 @default.
- W2592902783 hasConcept C199978012 @default.
- W2592902783 hasConcept C24890656 @default.
- W2592902783 hasConcept C2775846686 @default.
- W2592902783 hasConcept C2775924081 @default.
- W2592902783 hasConcept C2779843651 @default.
- W2592902783 hasConcept C2780150128 @default.
- W2592902783 hasConcept C2780155820 @default.
- W2592902783 hasConcept C33923547 @default.
- W2592902783 hasConcept C41008148 @default.
- W2592902783 hasConcept C47432892 @default.
- W2592902783 hasConcept C47446073 @default.
- W2592902783 hasConcept C50644808 @default.
- W2592902783 hasConceptScore W2592902783C105795698 @default.
- W2592902783 hasConceptScore W2592902783C119599485 @default.
- W2592902783 hasConceptScore W2592902783C121332964 @default.
- W2592902783 hasConceptScore W2592902783C127313418 @default.